Multilevel Logistic Models

And MLM for Categorical Outcomes

October 24 2020 (updated: 6 November 2021)

Learning Objectives

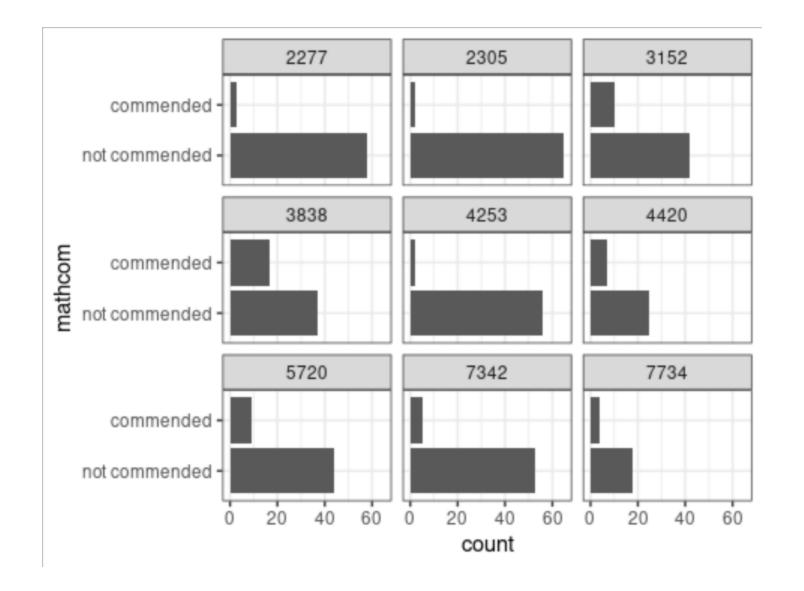
- Describe the problems of using a regular multilevel model for a binary outcome variable
- Write model equations for multilevel logistic regression
- Estimate intraclass correlations for binary outcomes
- Plot model predictions in probability unit

Binary Outcomes

- Pass/fail
- Agree/disagree
- Choosing stimulus A/B
- Diagnosis/no diagnosis

Example Data

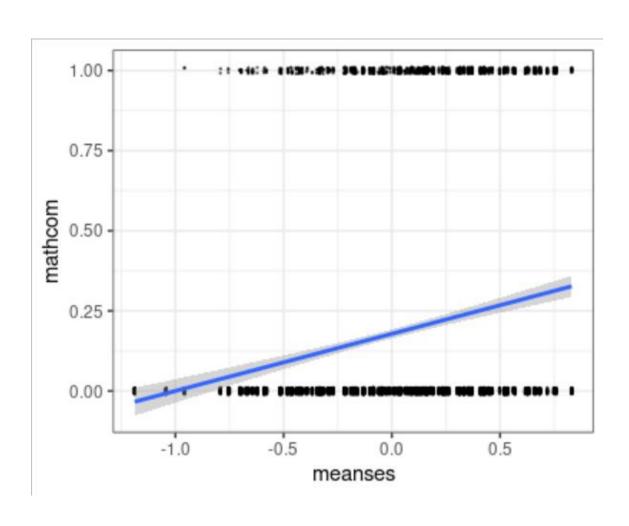
- HSB data
- mathcom
 - 0 (not commended) if mathach < 20
 - 1 (commended) if mathach ≥ 20



Linear, Normal MLM

```
Random effects:
Conditional model:
Groups Name
              Variance Std.Dev.
 id (Intercept) 0.005148 0.07175
 Residual 0.136664 0.36968
Number of obs: 7185, groups: id, 160
Dispersion estimate for gaussian family (sigma^2): 0.137
Conditional model:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.178404 0.007222 24.70 <2e-16 ***
meanses 0.178190 0.017483 10.19 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Prediction Out of Range



Problems

- Out of range prediction
 - E.g., predicted value = -0.18 when meanses = -2
- Non-normality
 - The outcome can only take two values, and clearly not normal
- Nonconstant error variance/heteroscedasticity

Multilevel Logistic Model

For binary responses

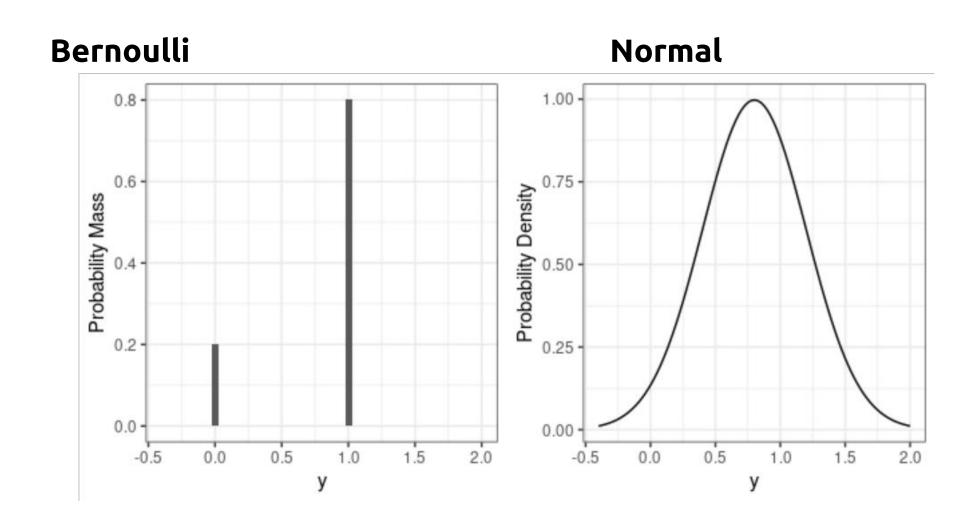
Logistic Model

- A special case of the Generalized Linear Mixed Model (GLMM)
- Modify the linear, normal model in two ways:
- Outcome distribution: Normal → Bernoulli
- 2. Predicted value
 - Mean of binary outcome (i.e., probability with range 0 to 1)

Logistic Model

- A special case of the Generalized Linear Mixed Model (GLMM)
- Modify the linear, normal model in two ways:
- 1. Outcome distribution: Normal → Bernoulli
- 2. Predicted value
 - Mean of binary outcome (i.e., probability with range 0 to 1)
 - Transformed mean (i.e., log odds with range $-\infty$ to ∞)

Outcome Distribution



Transformation (Step 1): Odds

- Odds: Probability / (1 Probability)
- Example:
 - 80% chance of being commended
 - = 4 to 1 odds in favor of being commended
 - Odds = 4 = 80% / (1 80%)
- Range of odds: 0 to ∞

Transformation (Step 2): Log-Odds

- Instead of predicting the probability, we predict the log odds
 - Solve the out of range problem

$$Log Odds = log \frac{Probability}{1 - Probability}$$

- E.g., Probability = 0.8, odds = 4, $\log \text{ odds} = 1.39$
- E.g., Probability = 0.1, odds = 0.11, $\log odds = -2.20$
- Range of log-odds: $-\infty$ to ∞

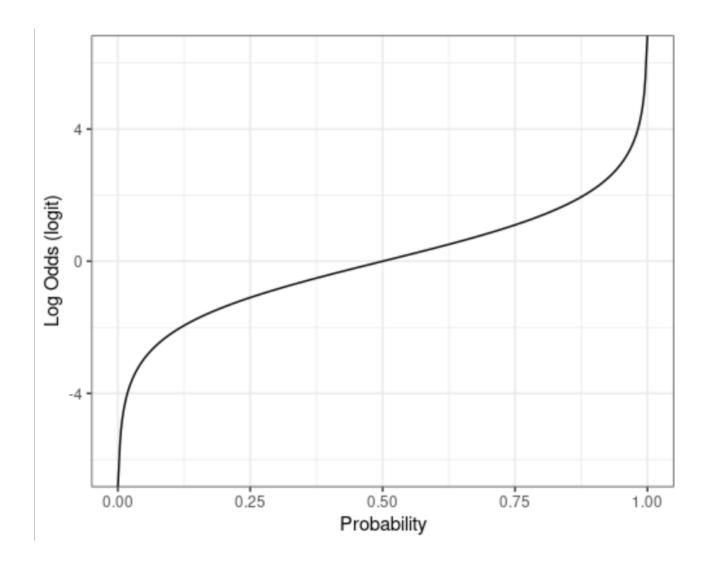
No longer needs to worry about out-of-range prediction

In logistic models, the coefficients are in the unit of log-odds

The transformation is called the <u>link</u> function

Interpretation less straight forward

Graph is preferred



Equations for Logistic MLM

Unconditional Model

Linear, Normal Model

```
• Lv 1: mathcom<sub>ij</sub> = \beta_{0j} + e_{ij}

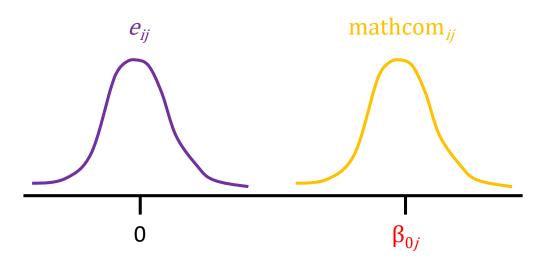
e_{ij} \sim N(0, \sigma)
```

• Lv 2:
$$\beta_{0j} = \gamma_{00} + u_{0j}$$

 $u_{0j} \sim N(0, \tau_0)$

Another Way to Write the Model

- Lv 1: mathcom_{ij} ~ $N(\mu_{ij}, \sigma)$ $\mu_{ij} = \beta_{0j}$
- Lv 2: $\beta_{0j} = \gamma_{00} + u_{0j}$ $u_{0j} \sim N(0, \tau_0)$



Replace the Distribution

- Lv 1: mathcom_{ij} ~ Bernoulli(μ_{ij}) $\mu_{ij} = \beta_{0i}$
- Lv 2: $\beta_{0j} = \gamma_{00} + u_{0j}$ $u_{0j} \sim N(0, \tau_0)$

Note: The Bernoulli distribution does not have a scale parameter

Transformation/Link Function

```
• Lv 1: mathcom_{ij} ~ Bernoulli(\mu_{ij})
\eta_{ij} = \text{logit}(\mu_{ij}) = \text{log}[\mu_{ij} / (1 - \mu_{ij})]
\eta_{ij} = \beta_{0j}
```

• Lv 2: $\beta_{0j} = \gamma_{00} + u_{0j}$ $u_{0j} \sim N(0, \tau_0)$ Transform probability to log-odds

Model log-odds η_{ii} = linear predictor

Multilevel Logistic Model

• Lv 1: mathcom_{ij} ~ Bernoulli(μ_{ij}) $\eta_{ij} = \text{logit}(\mu_{ij}) = \text{log}[\mu_{ij} / (1 - \mu_{ij})]$

 $\eta_{ij} = \beta_{0j}$

• Lv 2: $\beta_{0j} = \gamma_{00} + u_{0j}$ $u_{0j} \sim N(0, \tau_0)$

 β_{0j} = Mean log-odds for school j

 u_{0j} = School j's deviation in log-odds

 γ_{00} = log-odds for an average school

glmmTMB output

- For an average school, the estimated log-odds for being commended = -1.64, 95% CI [-1.78, -1.51]
- The estimated school-level standard deviation in log-odds for being commended = 0.75, 95% CI [0.64, 0.88]

Intraclass Correlation

There is no σ parameter

- In the unit of log odds, σ^2 is fixed to be π^2 / 3
 - $\pi = 3.14159265...$
- Intraclass correlation:

•
$$\rho = \frac{\tau_0^2}{\tau_0^2 + \sigma^2} = \frac{0.75^2}{0.75^2 + \pi^2/3} = .15$$

Interpretations of Coefficients

Conditional Model

Multilevel Logistic Model

• Lv 1: mathcom $_{ij}$ ~ Bernoulli(μ_{ij}) $\eta_{ij} = \operatorname{logit}(\mu_{ij}) = \operatorname{log}[\mu_{ij} / (1 - \mu_{ij})]$ $\eta_{ij} = \beta_{0j}$ $u_{0j} = \operatorname{School} j's \text{ deviation in}$

• Lv 2: $\beta_{0j} = \gamma_{00} + \gamma_{01} \text{ meanses}_j + u_{0j}$ $u_{0j} \sim N(0, \tau_0)$

 β_{0j} = Mean log-odds for school j

 γ_{00} = Predicted log-odds when meanses = 0 and u_{0j} = 0 γ_{01} = Predicted difference in log-odds associated with a unit change in meanses = 0

log-odds

Adding a Level-1 Predictor

• Lv 1: mathcom_{ij} ~ Bernoulli(μ_{ij}) $\eta_{ij} = \text{logit}(\mu_{ij}) = \text{log}[\mu_{ij} / (1 - \mu_{ij})]$ $\eta_{ij} = \beta_{0j} + \beta_{1j} \text{ses_cmc}_{ij}$

Same thing: Clustermean centering, random slopes; just in log-odds

• Lv 2:
$$\beta_{0j} = \gamma_{00} + \gamma_{01} \text{ meanses}_j + u_{0j}$$

$$\beta_{1j} = \gamma_{10} + u_{1j}$$

$$\binom{u_{0j}}{u_{1j}} \sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \tau_{01}^2 & \tau_{01} \\ \tau_{01} & \tau_{1}^2 \end{bmatrix} \right)$$

 β_{1j} = Predicted difference in log-odds associated with a unit difference in student-level SES <u>within school</u> j

glmmTMB Output

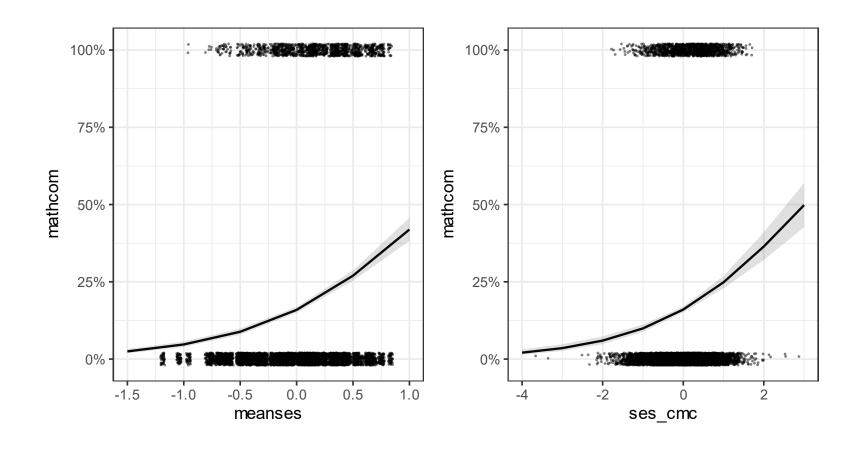
```
># Random effects:
>#
># Conditional model:
># Groups Name Variance Std.Dev. Corr
># id
      (Intercept) 0.27177 0.5213
      ses_cmc 0.01217 0.1103 -1.00
>#
># Number of obs: 7185, groups: id, 160
>#
># Conditional model:
        Estimate Std. Error z value Pr(>|z|)
>#
```

Cluster-/Unit-Specific vs. Population Average

- Coefficients in MLM requires a <u>cluster-specific (CS)</u> interpretation
 - Predicted difference in log-odds for two students in the <u>same school</u> (i.e., conditioned on u_{0j}), one with SES_cmc = 1 and the other with SES_cmc = 0 (so they have the same u_{0j})
- As opposed to population average (PA) coefficients (e.g., GEE)
 - Predicted difference in log-odds for an <u>average</u> student with SES_cmc = 1 and an <u>average</u> student with SES_cmc = 0
- Coefficients are usually smaller with PA than with CS

Interpretation is Hard

• Better approach: Plot the results in probability unit



Notes on Interpretation

- Predicted difference in probability is not constant across different levels of the predictor
- It's useful to get the predicted probabilities for representative values in the data

Notes on Interpretation

- Another common practice is to convert the coefficients to odds ratio
 - OR = $\exp(\gamma)$ for average slope
 - OR = $\exp(\beta_{1i})$ for cluster-specific slope
- It's still hard to understand what a ratio of two odds would mean

Generalized Linear Mixed-Effect Model (GLMM)

For other discrete outcomes

Intrinsically Non-Normal Outcomes

- Counts
 - E.g., # of correct answers, # children, # symptoms, incidence rates
- Rating scales (Ordinal)
 - E.g., Likert scale, ranking
- Nominal
 - E.g., voting in a 3-party election

Generalized Linear Model

- McCullagh & Nelder (1989)
- Generalized linear: linear after some transformation
 - E.g., $logit(\mu) = b_0 + b_1 X_1 + b_2 X_2$

Generalized Linear Model (cont'd)

- Three elements:
 - Error/conditional distribution of Y (with mean μ and an optional dispersion parameter)
 - E.g., Bernoulli
 - Linear predictor (n)
 - The predicted value (e.g., log odds)
 - Link function $(\eta = g[\mu])$
 - The transformation

Other Common Types of GLM/GLMM

- Binomial logistic
- Poisson
- Ordinal (not GLMM but highly related)

Binomial Logistic

- For counts (with known number of trials)
 - E.g., number of female hires out of *n* new hires
 - E.g., number of symptoms on a checklist of *n* items
- Multiple Bernoulli trials
- Conditional distribution: Binomial(n, μ)
- Link: logit
- Linear predictor: log odds
- R code: family = binomial("logit")

Poisson

- For counts (with infinite/vague number of trials)
 - E.g., number of binge drinking episodes
 - E.g., number of spam emails
- Conditional distribution: Poisson(μ)
- Link: log
- Linear predictor: log rate of occurrence
- R code: family = Poisson("log")

Ordinal

- For ordinal outcome with less than 5 categories/skewed distribution
 - E.g., Happiness (1-4)
- Conditional distribution: Categorical
- Link: logit
- Linear predictor: log odds of endorsing k + 1 or above vs. k or below
 - E.g., choosing 3 or 4 vs. 2 or 1 on the happiness scale
- Check out the R function ordinal::clmm()