Multilevel Logistic Models

And MLM for Categorical Outcomes
October 242020 (updated: 6 November 2021)

Learning Objectives

- Describe the problems of using a regular multilevel model for a binary outcome variable
- Write model equations for multilevel logistic regression
- Estimate intraclass correlations for binary outcomes
- Plot model predictions in probability unit

Binary Outcomes

- Pass/fail
- Agree/disagree
- Choosing stimulus A / B
- Diagnosis/no diagnosis

Example Data

- HSB data
- mathcom
- 0 (not commended) if mathach < 20
- 1 (commended) if mathach ≥ 20

Linear, Normal MLM

Random effects:

Conditional model:	
Groups Name	
id	Variance Std.Dev.
Residual	
Number of obs: 7185, groups: id, 160	

Dispersion estimate for gaussian family (sigma^2): 0.137
Conditional model:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	0.178404	0.007222	24.70	$<2 \mathrm{e}-16{ }^{* * *}$
meanses	0.178190	0.017483	10.19	$<2 \mathrm{e}-16^{* * *}$

Signif. codes: 0 ‘***’ 0.001 r**’ 0.01 ‘*’ 0.05 '.’ 0.1 ' , 1

Prediction Out of Range

Problems

- Out of range prediction
- E.g., predicted value $=-0.18$ when meanses $=-2$
- Non-normality
- The outcome can only take two values, and clearly not normal
- Nonconstant error variance/heteroscedasticity

Multilevel Logistic Model

For binary responses

Logistic Model

- A special case of the Generalized Linear Mixed Model (GLMM)
- Modify the linear, normal model in two ways:

1. Outcome distribution: Normat \rightarrow Bernoulli
2. Predicted value

- Mean of binary outcome (i.e., probability with range 0 to 1)

Logistic Model

- A special case of the Generalized Linear Mixed Model (GLMM)
- Modify the linear, normal model in two ways:

1. Outcome distribution: Normat \rightarrow Bernoulli
2. Predicted value

- Mean of binary outcome (ie., probability with range 0 to -1)
- Transformed mean (i.e., log odds with range $-\infty$ to ∞)

Outcome Distribution

Bernoulli

Normal

Transformation (Step 1): Odds

- Odds: Probability / (1 - Probability)
- Example:
- 80% chance of being commended
- = 4 to 1 odds in favor of being commended
- Odds = $4=80 \% /(1-80 \%)$
- Range of odds: 0 to ∞

Transformation (Step 2): Log-Odds

- Instead of predicting the probability, we predict the log odds
- Solve the out of range problem

$$
\text { Log Odds }=\log \frac{\text { Probability }}{1-\text { Probability }}
$$

- E.g., Probability $=0.8$, odds $=4, \log$ odds $=1.39$
- E.g., Probability $=0.1$, odds $=0.11, \log$ odds $=-2.20$
- Range of log-odds: $-\infty$ to ∞

No longer needs to worry about out-ofrange prediction

In logistic models, the coefficients are in the unit of log-odds

The transformation is called the link function

Interpretation less straight forward

Graph is preferred

Equations for Logistic MLM

Unconditional Model

Linear, Normal Model

- Lv 1: mathcom ${ }_{i j}=\beta_{0 j}+e_{i j}$

$$
e_{i j} \sim N(0, \sigma)
$$

- Lv 2: $\beta_{0 j}=\gamma_{00}+u_{0 j}$

$$
u_{0 j} \sim N\left(0, \tau_{0}\right)
$$

Another Way to Write the Model

- Lv 1: mathcom ${ }_{i j} \sim N\left(\mu_{i j} \sigma\right)$

$$
\mu_{i j}=\beta_{0 j}
$$

- Lv 2: $\beta_{0 j}=\gamma_{00}+u_{0 j}$

$$
u_{0 j} \sim N\left(0, \tau_{0}\right)
$$

Replace the Distribution

- Lv 1: mathcom $\left.{ }_{i j} \sim \operatorname{Bernoulli}^{(} \mu_{i j}\right)$

$$
\mu_{i j}=\beta_{0 j}
$$

- Lv 2: $\beta_{0 j}=\gamma_{00}+u_{0 j}$

$$
u_{0 j} \sim N\left(0, \tau_{0}\right)
$$

Note: The Bernoulli distribution does not have a scale parameter

Transformation/Link Function

- Lv 1: mathcom $_{i j} \sim \operatorname{Bernoulli}\left(\mu_{i j}\right)$

$$
\begin{aligned}
\eta_{i j} & =\operatorname{logit}\left(\mu_{i j}\right)=\log \left[\mu_{i j} /\left(1-\mu_{i j}\right)\right] \\
\eta_{i j} & =\beta_{0 j}
\end{aligned}
$$

- Lv 2: $\beta_{0 j}=\gamma_{00}+u_{0 j}$

$$
u_{0 j} \sim N\left(0, \tau_{0}\right)
$$

Multilevel Logistic Model

- Lv 1: mathcom $\left.{ }_{i j} \sim \operatorname{Bernoulli}^{(} \mu_{i j}\right)$

$$
\begin{aligned}
\eta_{i j} & =\operatorname{logit}\left(\mu_{i j}\right)=\log \left[\mu_{i j} /\left(1-\mu_{i j}\right)\right] \\
\eta_{i j} & =\beta_{0 j}
\end{aligned}
$$

- Lv 2: $\beta_{0 j}=\gamma_{00}+u_{0 j}$
$u_{0 j}=$ School j 's deviation in
log-odds
$u_{0 j} \sim N\left(0, \tau_{0}\right)$
$\beta_{0 j}=$ Mean log-odds for school j

$$
\gamma_{00}=\text { log-odds for an average school }
$$

glmmTMB output

```
> confint(m0_logit)
># 2.5 % 97.5 % Estimate
># cond.(Intercept) -1.781 -1.509 -1.645
># id.cond.Std.Dev.(Intercept) 0.638 0.881 0.749
```

- For an average school, the estimated log-odds for being commended $=-1.64,95 \%$ CI [-1.78, -1.51]
- The estimated school-level standard deviation in log-odds for being commended $=0.75,95 \% \mathrm{Cl}[0.64,0.88]$

Intraclass Correlation

```
># Random effects:
>#
># Conditional model:
># Groups Name Variance Std.Dev.
># id (Intercept) 0.5617 0.7495
># Number of obs: 7185, groups: id, 160
```

- In the unit of \log odds, σ^{2} is fixed to be $\pi^{2} / 3$
- $\pi=3.14159265 \ldots$
- Intraclass correlation:
- $\rho=\frac{\tau_{0}^{2}}{\tau_{0}^{2}+\sigma^{2}}=\frac{0.75^{2}}{0.75^{2}+\pi^{2} / 3}=.15$

Interpretations of Coefficients

Conditional Model

Multilevel Logistic Model

- Lv 1: mathcom ${ }_{i j} \sim \operatorname{Bernoulli}\left(\mu_{i j}\right)$

$$
\begin{aligned}
\eta_{i j} & =\operatorname{logit}\left(\mu_{i j}\right)=\log \left[\mu_{i j} /\left(1-\mu_{i j}\right)\right] \\
\eta_{i j} & =\beta_{0 j}
\end{aligned}
$$

- Lv 2: $\beta_{0 j}=\gamma_{00}+\gamma_{01}$ meanses $_{j}+u_{0 j}$
$u_{0 j}=$ School ${ }^{j}$'s deviation in log-odds
$u_{0 j} \sim N\left(0, \tau_{0}\right)$
$\beta_{0 j}=$ Mean log-odds for school j

$$
\begin{aligned}
& \gamma_{00}=\text { Predicted log-odds when } \\
& \text { meanses }=0 \text { and } u_{0 j}=0 \\
& \gamma_{01}=\text { Predicted difference in log-odds } \\
& \text { associated with a unit change in } \\
& \text { meanses }=0
\end{aligned}
$$

Adding a Level-1 Predictor

- Lv 1: mathcom $\left.{ }_{i j} \sim \operatorname{Bernoulli}^{(} \mu_{i j}\right)$

$$
\begin{aligned}
\eta_{i j} & =\operatorname{logit}\left(\mu_{i j}\right)=\log \left[\mu_{i j} /\left(1-\mu_{i j}\right)\right] \\
\eta_{i j} & =\beta_{0 j}+\beta_{1 j}{\operatorname{ses} _c m c_{i j}}^{2}
\end{aligned}
$$

Same thing: Clustermean centering, random slopes; just in log-odds

- Lv 2: $\beta_{0 j}=\gamma_{00}+\gamma_{01}$ meanses $_{j}+u_{0 j}$

$$
\begin{gathered}
\beta_{1 j}=\gamma_{10}+u_{1 j} \\
\binom{u_{0 j}}{u_{1 j}} \sim N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\tau_{0}^{2} & \tau_{01} \\
\tau_{01} & \tau_{1}^{2}
\end{array}\right]\right)
\end{gathered}
$$

$\beta_{1 j}=$ Predicted difference in log-odds associated with a unit difference in student-level SES within school j

glmmTMB Output

```
># Random effects:
>#
># Conditional model:
># Groups Name Variance Std.Dev. Corr
># id (Intercept) 0.27177 0.5213
># ses_cmc 0.01217 0.1103 -1.00
># Number of obs: 7185, groups: id, 160
>#
># Conditional model:
># Estimate Std. Error z value Pr(>|z|)
># (Intercept) -1.71979 0.05598 -30.72 <2e-16 ***
># meanses 1.40117 0.13502 10.38 <2e-16 ***
># ses_cmc 0.58491 0.05338 10.96 <2e-16 ***
```


Cluster-/Unit-Specific vs. Population Average

- Coefficients in MLM requires a cluster-specific (CS) interpretation
- Predicted difference in log-odds for two students in the same school (i.e., conditioned on $u_{0 j}$), one with SES_cmc = 1 and the other with SES_cmc $=0$ (so they have the same $u_{0 j}$)
- As opposed to population average (PA) coefficients (e.g., GEE)
- Predicted difference in log-odds for an average student with SES_cmc = 1 and an average student with SES_cmc = 0
- Coefficients are usually smaller with PA than with CS

Interpretation is Hard

- Better approach: Plot the results in probability unit

Notes on Interpretation

- Predicted difference in probability is not constant across different levels of the predictor
- It's useful to get the predicted probabilities for representative values in the data

```
># meanses ses_cmc .fitted
># 1 0 -0.5 0.126
># 2 0 0.5 0.199
lr# meanses ses_cmc 
```


Notes on Interpretation

- Another common practice is to convert the coefficients to odds ratio
- OR $=\exp (\gamma)$ for average slope
- OR = $\exp \left(\beta_{1 j}\right)$ for cluster-specific slope
- It's still hard to understand what a ratio of two odds would mean

Generalized Linear Mixed-Effect Model (GLMM)

For other discrete outcomes

Intrinsically Non-Normal Outcomes

- Counts
- E.g., \# of correct answers, \# children, \# symptoms, incidence rates
- Rating scales (Ordinal)
- E.g., Likert scale, ranking
- Nominal
- E.g., voting in a 3-party election

Generalized Linear Model

- McCullagh \& Nelder (1989)
- Generalized linear: linear after some transformation
- E.g., $\operatorname{logit}(\mu)=b_{0}+b_{1} X_{1}+b_{2} X_{2}$

Generalized Linear Model (cont'd)

- Three elements:
- Error/conditional distribution of Y (with mean μ and an optional dispersion parameter)
- E.g., Bernoulli
- Linear predictor (η)
- The predicted value (e.g., log odds)
- Link function ($\eta=g[\mu]$)
- The transformation

Other Common Types of GLM/GLMM

- Binomial logistic
- Poisson
- Ordinal (not GLMM but highly related)

Binomial Logistic

- For counts (with known number of trials)
- E.g., number of female hires out of n new hires
- E.g., number of symptoms on a checklist of n items
- Multiple Bernoulli trials
- Conditional distribution: Binomial($n, \mu)$
- Link: logit
- Linear predictor: log odds
- R code: family = binomial("logit")

Poisson

- For counts (with infinite/vague number of trials)
- E.g., number of binge drinking episodes
- E.g., number of spam emails
- Conditional distribution: Poisson(μ)
- Link: log
- Linear predictor: log rate of occurrence
- R code: family = Poisson("log")

Ordinal

- For ordinal outcome with less than 5 categories/skewed distribution
- E.g., Happiness (1-4)
- Conditional distribution: Categorical
- Link: logit
- Linear predictor: log odds of endorsing $k+1$ or above vs. k or below
- E.g., choosing 3 or 4 vs. 2 or 1 on the happiness scale
- Check out the R function ordinal: :clmm()

