Longitudinal Data Analysis II

PSYC 575

October 6, 2020 (updated: 23 October 2021)

Learning Objectives

- Specify models with alternative error **covariance structures**
- Describe the difference between analyzing trends vs. analyzing **dynamics** with longitudinal data
- Run analyses with time-varying predictors (i.e., level-1 predictors)
- Interpret and plot results

Covariance Structure

Longitudinal vs. Cross-Sectional Data

- School A: Student 1, 2, 3, . . .
 - Swapping the order is not a problem
- Person A: Observation 1, 2, 3 . . .
 - Swapping the order may be a problem
- Temporal ordering may mean that observations closer in time may be more strongly related
 - More likely when observations are a day apart vs. a year apart
- However, our previous models do not consider temporal dependence

Covariance Structure

- Covariances with respect to time
 - Covariance: how much two variables covary

> cov(curran_wide %>% select(read1:read4), use = "pair") %>% print(digits = 2)

Is there a trend for the variances?

Complex Covariance Structure

• Serial Correlation

read2

read3

read4

• Correlation = covariance / (*SD*₁ * *SD*₂)

```
> cor(curran_wide %>% select(read1:read4), use = "pair") %>%
    print(digits = 2)
```

read1 read2 read3 read4 read1 1.00 0.66 0.54 0.45

0.66 1.00 0.78 0.76

0.54 0.78 1.00 0.80

0.45 0.76 0.80 1.00

Lag 2 correlation Lag 1 correlation

How do the correlations look?

Complex Covariance Structure

- It is obvious that there are substantial covariances across time, and the variances seem increasing
 - Potential violations of (a) independent observations and (b) homogeneity of variance
- In MLM, the implied temporal covariance has the form
 ZGZ' + R
 - **Z**: Design matrix for random effects
 - **G**: Covariance matrix of random effects (i.e., u_{0i} , u_{1i} , etc)
 - **R**: Covariance matrix of errors (i.e., e_{ti})

Covariance Structure in OLS

• OLS: Independence

• Only **R**, with constant variance over time

1.09			
0.00	1.09		
0.00	0.00	1.09	
0.00	0.00	0.00	1.09

Covariance Structure in Random-Intercept MLM/Repeated Measures ANOVA

• ZGZ'

 Same covariance for all time points

0.79			
0.79	0.79		
0.79	0.79	0.79	
0.79	0.79	0.79	0.79

+

• **R**

Independent and constant variance over time

0.41			
0	0.41		
0	0	0.41	
0	0	0	0.41

Covariance Structure in Random-Intercept MLM/Repeated Measures ANOVA

1.20			
0.79	1.20		
0.79	0.79	1.20	
0.79	0.79	0.79	1.20

Does this seem to describe the data well?

Covariance Structure With Random Slopes (Piecewise Growth)

• ZGZ'

• Same covariance for all time points

0.60			
0.64	0.92		
0.62	1.00	1.13	
0.60	1.08	1.26	1.44

+

• R

• Independent and constant variance over time

0.35			
0	0.35		
0	0	0.35	
0	0	0	0.35

Covariance Structure With Random Slopes

Covariance

Correlation

0.94			
0.64	1.26		
0.62	1.00	1.47	
0.60	1.08	1.26	1.79

1.00			
0.59	1.00		
0.53	0.73	1.00	
0.46	0.72	0.78	1.00

So far we have only looked at the **ZGZ'** part, which are due to person-specific intercepts and slopes

Autoregressive(1) Error Covariance Structure

Decreasing correlation across
 Estimated ρ = 0.04 time:

• Lag 1 =
$$\rho$$
; Lag 2 = ρ^2

• $-1 \le \rho \le 1$

0.26			
0.01	0.26		
0.00	0.01	0.26	
0.00	0.00	0.01	0.26

R Output

Random effects:

Conditio	onal model:					sma
Groups	Name	Std.Dev.	Corr			inclu
id	(Intercept)	0.7714				slop
	phase1	0.4743	0.13			siop
	phase2	0.2247	-0.12	0.96		
id.1	<pre>factor(time)1</pre>	0.5115	0.04 (ar1)	0.04 (ar1)	0.04 ((ar1)

Error autocorrelation is small (0.04), after including the random slopes

Likelihood Ratio Test

anova(m_pw, m_pw_ar1)

Data: curran_long

Models:

```
m_pw: read ~ phase1 + phase2 + (phase1 + phase2 | id), zi=~0, disp=~1
```

```
m_pw_ar1: read ~ phase1 + phase2 + (phase1 + phase2 | id) + ar1(0 + factor(time) | , zi=~0,
disp=~0
```

```
m_pw_ar1: id), zi=~0, disp=~1
```

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

m_pw 10 3229.7 3281.6 -1604.9 3209.7

m_pw_ar1 11 3231.6 3288.7 -1604.8 3209.6 0.0973 1 0.755

Autoregressive effect not significant

Remarks

- There are many other structures discussed in the longitudinal data analysis
 - E.g., AR(2), Toeplitz, etc
- The closer the time points are, the more likely that the errors have temporal correlations, even after including the random slopes
- In my experience, including an AR(1) structure does a reasonable job for many situations

Example

The Cognition, Health, and Aging Project

- The first wave of the CHAP
- Six observations over a two-week period
 - Sessions 2-6
- baseage: *M* = 80.13 (*SD* = 6.11)

Time-Varying Covariates

- Variables at the within-person level that changes over time
- Need cluster-mean/person-mean centering
 - Between-person/within-person effects
- Symptoms: Number of physical symptoms in the past 24 hours
 - Max = 5
- Mood: Daily report negative mood (1 5)
 - Mood1: center at 1 (0 4)
- Stressor: Presence of a daily stressor (0 = stressor-free day; 1 = stressor day)

Decomposition of Effects

- Very important for some variables with longitudinal data
 - But not for the "time" variable
 - May not be meaningful for other measures of time (e.g., age)
- Trait: Person mean, time-invariant (in some sense)
- State: Deviation (fluctuation) from person mean, time-varying

Describing Fluctuations

- TIME may not be a predictor (unless a stable trend is found)
- The interest is in the momentary changes

Model 1

Model Equations

Level 1:

 $symptoms_{ti} = \beta_{0i} + \beta_{1i}mood1_pmc_{ti} + e_{ti}$

Level 2:

 $eta_{0i} = \gamma_{00} + \gamma_{01} \mathrm{mood1_pm}_i + \gamma_{02} \mathrm{women}_i + \gamma_{03} \mathrm{mood1_pm}_i imes \mathrm{women}_i + u_{0i} \ eta_{1i} = \gamma_{10} + \gamma_{11} \mathrm{women}_i + u_{1i}$

Fixed Effects (with glmmTMB)

Conditional model:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	0.86403	0.24618	3.510	0.000449	***
mood1_pm	3.86285	0.81368	4.747	2.06e-06	***
mood1_pmc	0.00396	0.26835	0.015	0.988225	
womenwomen	-0.04167	0.28314	-0.147	0.883002	
<pre>mood1_pm:womenwomen</pre>	-2.14123	0.90529	-2.365	0.018018	*
<pre>mood1_pmc:womenwomen</pre>	0.16552	0.30859	0.536	0.591699	

Note the between-person and the within-person effects are drastically different

plot_model(m1)

Interaction Plots

Between/Within Effects

Model 2

Add stressor to the Equation

- A time-varying binary variable
- stressor_pm (person mean): Average stress level of a person (over the study period)
- However, the deviation from the person mean is harder to interpret
 - E.g., stressor_pmc = 0.8?
 - Methodologists do not agree how to treat it, but for this example we'll keep the binary lv-1 variable
 - → Contextual & within-person

Contextual and Within-Person Effects

Contextual Effect

Conditional model:

```
Estimate Std. Error z value Pr(>|z|)
```

• • •

stressor_pm	0.8487	0.3008	2.82	0.0048 **
stressorstressor day	0.0645	0.1005	0.64	0.5211

• On a stressor day (or a stressor-free day), a person who is one unit higher on average stress level reported on average 0.85 more symptoms, 95% CI [0.26, 1.44].

Topics Not Covered

- Comparable metric across time
 - Vertical scaling/Longitudinal measurement invariance
- Lag relationship/cross-lagged/autoregressive model
- Parallel-process model
- Missing data handling
- Multiple cohort design