Longitudinal Data Analysis I

PSYC 575

October 3, 2020 (updated: 10 October 2021)

Learning Objectives

- Describe the similarities and differences between longitudinal data and cross-sectional clustered data
- Perform some basic attrition analyses
- Specify and run growth curve analysis
- Analyze models with time-invariant covariates (i.e., lv-2 predictors) and interpret the results

Longitudinal Data and Models

Data Structure

- Students in Schools
- Repeated measures within individuals

Types of Longitudinal Data

- Panel data
- Everyone measured at the same time (e.g., every two years)
- Intensive longitudinal data
- Each person measured at many time points
- E.g., daily diary, ecological momentary assessment (EMA)

Two Different Goals of Longitudinal Models

- Trend
- Growth modeling
- Stable pattern
- E.g., trajectory of cognitive functioning over five years
- Fluctuations
- Clear trend not expected
- E.g., fluctuation of mood in a day

Example

Children's Development in Reading Skill and Antisocial Behavior

- 405 children within first two years entering elementary school
- 2-year intervals between 1986 and 1992
- Age $=6$ to 8 years at baseline

Same Multilevel Structure

- At first, it may not be obvious looking at the data (in wide format)

$\underset{\langle\mathrm{dbl}}{\mathrm{id}}$	anti1 <dbl>	anti2 <dbl>	anti3 <dbl>	anti4 <dbl>	read1 <dbl>	read2 <dbl>	read3 <dbl>	read4 <dbl>
22	1	2	NA	NA	2.1	3.9	NA	NA
34	3	6	4	5	2.1	2.9	4.5	4.5
58	0	2	0	1	2.3	4.5	4.2	4.6
122	0	3	1	1	3.7	8.0	NA	NA
125	1	1	2	1	2.3	3.8	4.3	6.2
133	3	4	3	5	1.8	2.6	4.1	4.0
163	5	4	5	5	3.5	4.8	5.8	7.5
190	0	NA	NA	0	2.9	6.1	NA	NA
227	0	0	2	1	1.8	3.8	4.0	NA
248	1	2	2	0	3.5	5.7	7.0	6.9
	T1	T2	T3	T4	T1	T2	T3	T4

Restructuring!

- Long format

id $<\mathrm{dbl}>$	anti <dbl>	read $<\mathrm{dbl}>$	time $<\mathrm{dbl}>$
22	1	2.1	1
22	2	3.9	2
22	$N A$	$N A$	3
22	$N A$	$N A$	4
34	3	2.1	1
34	6	2.9	2
34	4	4.5	3
34	5	4.5	4
58	0	2.3	1
58	2	4.5	2

id <dbl>	anti <dbl>	read <dbl>	time $\langle\mathrm{dbl}>$
58	0	4.2	3
58	1	4.6	4
122	0	3.7	1
122	3	8.0	2
122	1	$N A$	3
122	1	$N A$	4
125	1	2.3	1
125	1	3.8	2
125	2	4.3	3
125	1	6.2	4

id <dbl>	anti $\langle\mathrm{dbl}>$	read $<\mathrm{dbl}>$	time $\langle\mathrm{dbl}>$
133	3	1.8	1
133	4	2.6	2
133	3	4.1	3
133	5	4.0	4
163	5	3.5	1
163	4	4.8	2
163	5	5.8	3
163	5	7.5	4
190	0	2.9	1
190	$N A$	6.1	2

Attrition Analysis

complete

- Whether those who dropped out differ in important characteristics than those who stayed
- Design: Collect information on predictors of attrition, and perceived likelihood of dropping out
- Limited generalizability
- Missing data handling techniques
- E.g., Multiple imputation, pattern mixture models

	complete		incomplete	
	Mean	SD	Mean	SD
anti1	1.49	1.54	1.89	1.78
read1	2.50	0.88	2.55	0.99
kidgen	0.52	0.50	0.48	0.50
momage	25.61	1.85	25.42	1.92
kidage	6.90	0.62	6.97	0.66
homecog	9.09	2.46	8.63	2.70
homeemo	9.35	2.23	9.01	2.41

Visualizing Some "Clusters"

Spaghetti Plot

Growth Curve Modeling

MLM for Longitudinal Data

	Student i in School j	Repeated measures at time t for Person i			
Lv-1 model	$\mathrm{MATH}_{i j}=\beta_{0 j}+\beta_{1 j} \mathrm{SES}_{i j}+e_{i j}$		$\mathrm{READ}_{t i}=\beta_{0 i}+\beta_{1 i} \mathrm{TIME}_{t i}+e_{t i} .	$	$\beta_{0 i}=\gamma_{00}+u_{0 i}$
:---					
$\beta_{1 i}=\gamma_{10}+u_{1 i}$					

Random Intercept Model (with glmmTMB)

```
> m00 <- glmmTMB(read ~ (1 | id), data = curran_long, REML = TRUE)
> summary(m00)
Random effects:
Conditional model:
    Groups Name Variance Std.Dev.
    id (Intercept) 0.3005 0.5482
    Residual 2.3903 1.5461
```

- Estimated ICC = 0.11

Linear Growth Model

- Here time is treated as a continuous variable
- Can handle varying occasions
- Assume time is an interval variable
- Fit a linear regression line between time and outcome for each "cluster" (individual)

(Grand) Centering of Time

- Time $=1,2,3,4$
- Time = 0, 1, 2, 3

Compared to Repeated Measures ANOVA

- MLM and RM-ANOVA are the same in some basic situations
- Some advantages of MLM
- Handles missing observations for individuals
- Larger statistical power
- Accommodates varying occasions
- Allows clustering at a higher level (i.e., 3-level model)
- Can include time varying or time-invariant predictor variables

Random Slope of Time

- It is uncommon to expect the growth trajectory is the same for every person
- Therefore, usually the baseline model in longitudinal data analysis is the random coefficient model of time

R Output (glmmTMB)

```
Family: gaussian ( identity )
Formula: read ~ time + (time | id)
```

Conditional model:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

| (Intercept) | 2.69609 | 0.04531 | 59.50 | $<2 \mathrm{e}-16$ |
| :--- | :--- | :--- | :--- | :--- |${ }^{* * *}$

The estimated mean of read at time $=0$ is $\mathrm{Y}_{00}=$ $2.70(S E=0.05)$

The model predicts that the constant growth rate per 1 unit increase in time (i.e., 2 years) is γ_{10} $=1.12$ ($S E=0.02$) units in read

Random effects:

Conditional model:				
Groups	Name	Variance	Std.Dev. Corr	
id	(Intercept)	0.57310	0.7570	
	time	0.07459	0.2731	0.29
Residual		0.34584	0.5881	

What do the SDs mean?

Piecewise Growth

Alternative Growth Shape

- For many problems, a linear growth model is at best an approximation
- Other common models (need 3+ time points)
- Piecewise
- Polynomial
- Exponential, spline, etc

Piecewise Growth Model

- Piecewise linear function
- $Y=\beta_{0}+\beta_{1}$ TIME, if TIME \leq TIME c
- $Y=\beta_{0}+\beta_{1}$ TIME $^{c}+\beta_{2}$ (TIME - TIME c), if TIME $>$ TIME c
- $\beta_{0}=$ initial status (when TIME =0)
- $\beta_{1}=$ phase 1 growth rate (up until TIME)
- $\beta_{2}=$ phase 2 growth rate (after TIME')

Coding of Time

time	phase1	phase2
0	0	0
1	1	0
2	1	1
3	1	2

$b_{0}=1, b_{0}=0.5, b_{2}=0.8$

- Dashed line: Phase 1
- Dotted line: Phase 2
- Combined: Linear piecewise growth

R Output

Conditional model:					
	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|\mathrm{z}\|)$	
(Intercept)	2.52272	0.04599	54.85	$<2 \mathrm{e}-16$	$* * *$
phase1	1.56213	0.04270	36.59	$<2 \mathrm{e}-16 * * *$	
phase2	0.87935	0.02548	34.52	$<2 \mathrm{e}-16 * * *$	

The model suggests that the average growth rate in phase 1 is 1.56 unit per unit time ($S E=$.04), but the growth rate decreases to 0.88 unit/time (SE $=0.03$) subsequently.

R Output

Random effects:

Conditional model:					
Groups	Name	Variance	Std.Dev. Corr		
id	(Intercept)	0.60520	0.7779		
	phase1	0.22695	0.4764	0.13	
	phase2	0.05364	0.2316	-0.15	0.96
Residual		0.25144	0.5014		

> SD of the phase 1 growth rate is 0.48 . Plausible range: majority of children have growth rates between $1.56+/-0.48=[1.08,2.04]$

Model Comparison

> AIC(m_gca, m_pw)

	df	AIC
m_gca	6	3394.001
m_pw	10	3229.738

- The model with lower AIC should be preferred

Predicted Average Trajectory

Including Predictors

Time-Invariant vs Time-Varying Covariates

- Time-invariant predictor: Lv-2
- Time-varying predictor: Lv-1 (to be discussed next week)
- "Cluster"-mean centering is generally recommended
- However, usually not meaningful for "time." Why?

Time-Invariant Covariate

- Time-invariant predictor: Lv-2
- Homecog (1-14): mother's cognitive stimulation at baseline
- Centered at 9

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$
(Intercept)	2.52735	0.04574	55.25	<2e-16
phase1	1.56669	0.04240	36.95	<2e-16
phase2	0.87980	0.02546	34.56	<2e-16
homecog9	0.04364	0.01777	2.46	0.0140
phase1:homecog9	0.04152	0.01661	2.50	0.0125
phase2:homecog9	0.01051	0.01007	1.04	0.2964

Cross-Level Interactions

Phase 1

Handling Varying Occasions

Different "Time" Variables

- So far we model changes as a function of time passage from a common fixed point of history
- l.e., when the study started
- In developmental research, one may be more interested in changes as a function of age
- l.e., time passage from each person's date of birth
- An advantage of MLM is that it does not require equal time intervals
- Person 1: age $7 \rightarrow \quad$ age $9 \rightarrow$ age 10
- Person 2: age $5 \rightarrow$ age $6.5 \rightarrow$ age 8

Handling Varying Occasions

- Age as predictor (see textbook)

```
# Subtract age by 6
curran_long <- curran_long %>%
    mutate(kidagetv = kídage + time * 2,
            # Compute the age for each time point
    kidage6tv = kidagetv - 6)
# Fit the model
m_agesq <- glmmTMB(read ~ kidage6tv + I(kidage6tv^2) + (kidage6tv + I(kidage6tv^2) | id),
    data = curran_long, REML = TRUE)
summary(m_agesq)
```

Random effects:

Conditional model:

Groups	Name	Variance	Std.Dev. Corr		
id	(Intercept)	0.2941947	0.5424		
	kidage6tv	0.1904793	0.4364	-0.98	
	I(kidage6tv^2)	0.0009304	0.0305	0.90	-0.96
		0.2461501	0.4961		
Residual					

> The model suggests that the average initial growth rate is 1.13 unit per year $(S E=.04)$

Conditional model:

Random effects:

Conditional model:

Groups	Name	Variance	Std.Dev. Corr		
id	(Intercept)	0.2941947	0.5424		
	kidage6tv	0.1904793	0.4364	-0.98	
	I(kidage6tv^2)	0.0009304	0.0305		-0.96
		0.2461501	0.4961		

Number of obs: 1325, groups: id, 405

> The 68\% plausible range of the initial growth rate is $1.13+/-$
> $0.44=[0.69,1.57]$

Conditional model:

| | Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$ | | |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | -0.320744 | 0.096834 | $-3.3120 .000925 * * *$ |
| kidage6tv | 1.128463 | 0.042191 | $26.746<2 e-16 * * *$ |
| I(kidage6tv^2) | -0.049581 | $0.003483-14.236<2 e-16 * * *$ | |

