Model Estimation, Testing, and Reporting

PSYC 575

Mark Lai

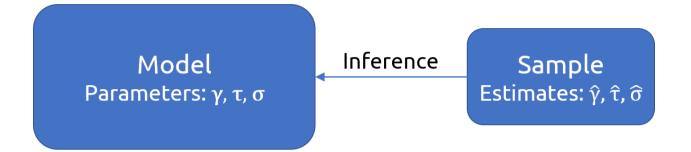
University of Southern California

2020/09/01 (updated: 2021-09-25)

Week Learning Objectives

- Describe conceptually what likelihood function and maximum likelihood estimation are
- Describe the differences between maximum likelihood and restricted maximum likelihood
- Conduct statistical tests for fixed effects
- Test fixed effects using the F-test with the **small-sample correction** when the number of clusters is small
- Use the **likelihood ratio test** to test random slopes

Estimation



Regression: OLS

MLM: Maximum likelihood, Bayesian

Why should I learn about estimation methods?

- Understand software options
- . Know when to use better methods
- Needed for reporting

Maximum Likelihood Estimation

The most commonly used methods in MLM are

maximum likelihood (ML) and restricted maximum likelihood (REML)

```
># Linear mixed model fit by REML ['lmerMod']
># Formula: Reaction ~ Days + (Days | Subject)
    Data: sleepstudy
># REML criterion at convergence: 1743.628
># Random effects:
                Std.Dev. Corr
># Groups Name
># Subject (Intercept) 24.741
>#
   Days
                5.922 0.07
           25.592
># Residual
># Number of obs: 180, groups: Subject, 18
># Fixed Effects:
># (Intercept) Days
      251.41 10.47
>#
```

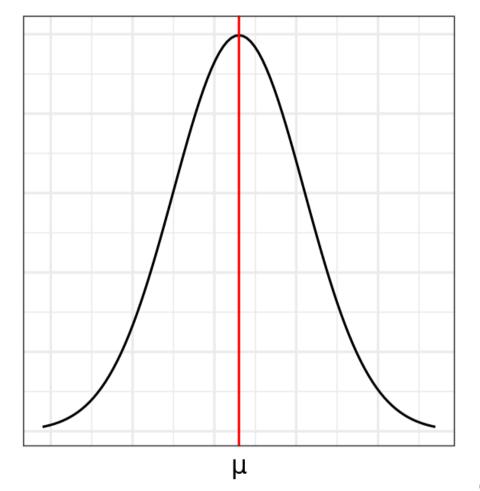
But what is "Likelihood"?

Likelihood

Let's say we want to estimate the population mean math achievement score (μ)

We need to make some assumptions:

- Known *SD*: $\sigma = 8$
- The scores are normally distributed in the population



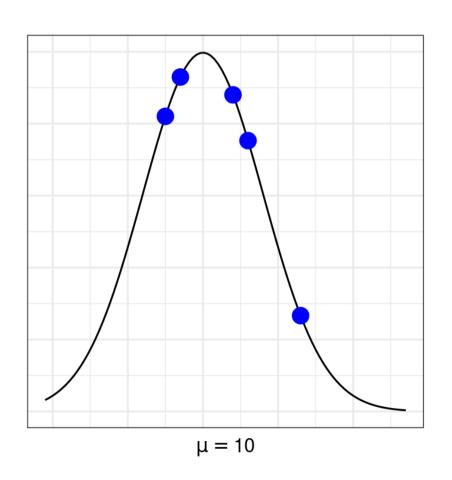
Learning the Parameter From the Sample

Assume that we have scores from 5 representative students

Student	Score
1	23
2	16
3	5
4	14
5	7

Likelihood

If we **assume** that $\mu = 10$, how likely will we get 5 students with these scores?



Student	Score	$P(Y_i = y_i \mid \mu = 10)$
1	23	0.0133173
2	16	0.0376422
3	5	0.0410201
4	14	0.0440082
5	7	0.0464819

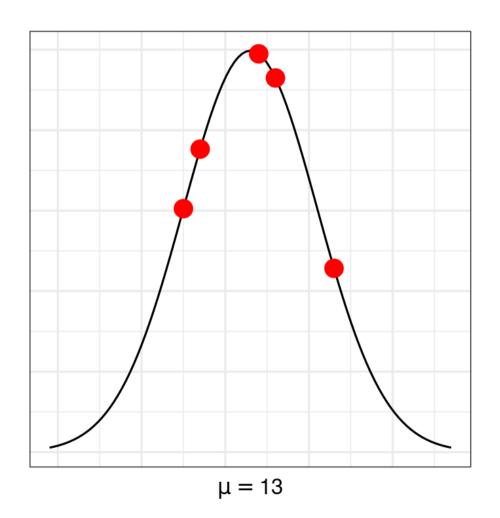
Multiplying them all together:

$$P(Y_1=23,Y_2=16,Y_3=5,Y_4=14,Y_5=7|\mu=10)$$

= Product of the probabilities =

$$prod(dnorm(c(23, 16, 5, 14, 7), mean = 10, s)$$

If $\mu=13$



Student	Score	$P(Y_i = y_i \mid \mu = 13)$
1	23	0.0228311
2	16	0.0464819
3	5	0.0302463
4	14	0.0494797
5	7	0.0376422

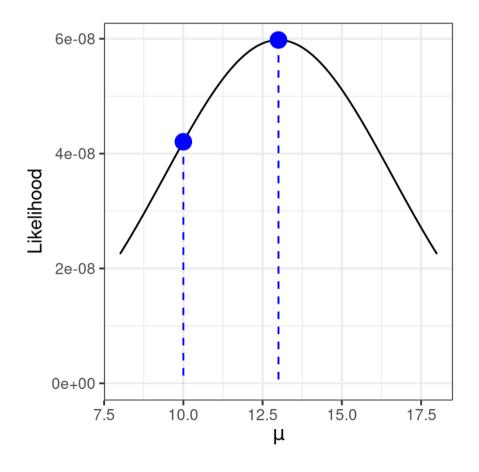
Multiplying them all together:

$$P(Y_1=23,Y_2=16,Y_3=5,Y_4=14,Y_5=7|\mu=13)$$

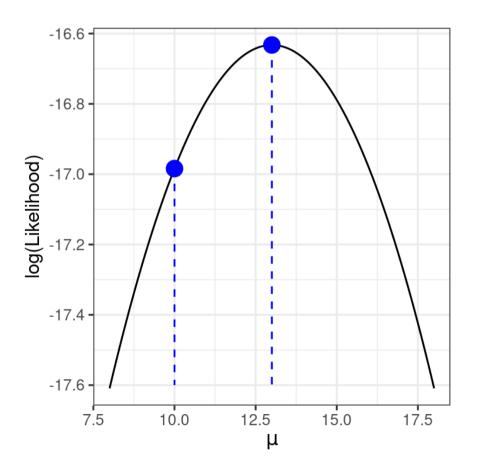
= Product of the probabilities =

># [1] 5.978414e-08

Likelihood Function



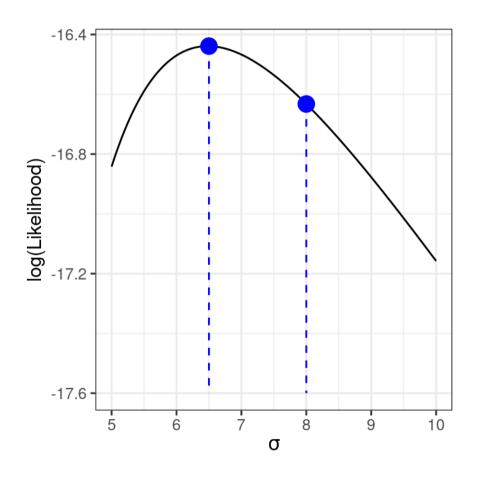
Log-Likelihood (LL) Function



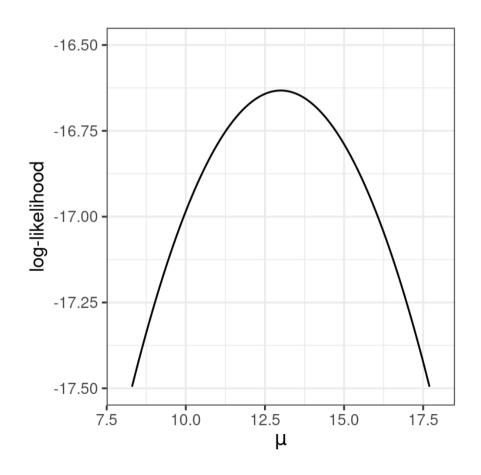
Maximum Likelihood

 $\hat{\mu}=13$ maximizes the (log) likelihood function Maximum likelihood estimator (MLE)

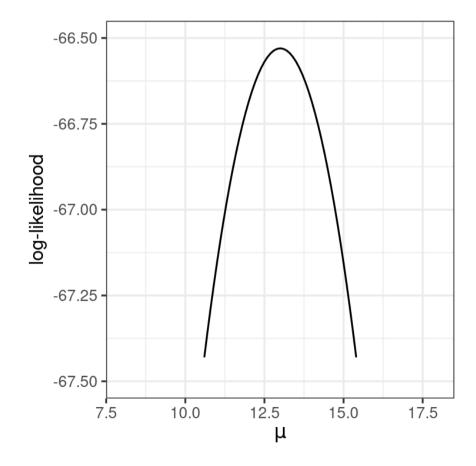
Estimating σ



Curvature and Standard Errors



$$N=20$$



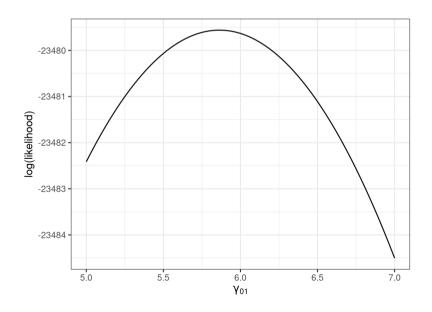
Estimation Methods for MLM

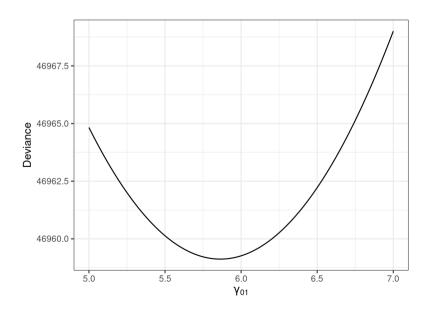
For MLM

Find γ s, τ s, and σ that maximizes the likelihood function

$$\ell(oldsymbol{\gamma}, oldsymbol{ au}, \sigma; \mathbf{y}) = -rac{1}{2} \Bigl\{ \log |\mathbf{V}(oldsymbol{ au}, \sigma)| + (\mathbf{y} - \mathbf{X}oldsymbol{\gamma})^ op \mathbf{V}^{-1}(oldsymbol{ au}, \sigma)(\mathbf{y} - \mathbf{X}oldsymbol{\gamma}) \Bigr\} + K$$

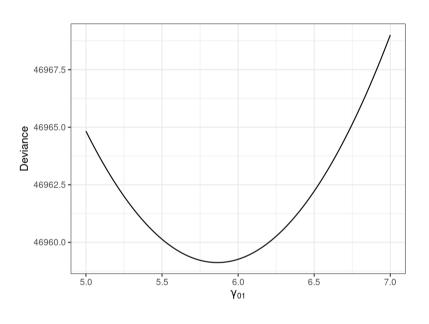
Here's the log-likelihood function for the coefficient of meanses (see code in the provided Rmd):





Numerical Algorithms

```
m_lv2 <- lmer(mathach ~ meanses + (1 | id),</pre>
># iteration: 1
 > #  f(x) = 47022.519159 
># iteration: 2
># f(x) = 47151.291766
># iteration: 3
># f(x) = 47039.480137
># iteration: 4
 > #  f(x) = 46974.909593 
># iteration: 5
 > #  f(x) = 46990.872588 
># iteration: 6
># f(x) = 46966.453125
># iteration: 7
># f(x) = 46961.719993
># iteration: 8
># f(x) = 46965.890703
># iteration: 9
># f(x) = 46961.367013
># iteration: 10
```



ML vs. REML

REML has corrected degrees of freedom for the variance component estimates (like dividing by N-1 instead of by N in estimating variance)

- REML is generally preferred in smaller samples
- The difference is small with large number of clusters

Technically speaking, REML only estimates the variance components¹

[1] The fixed effects are integrated out and are not part of the likelihood function. They are solved in a second step, usually by the generalized least squares (GLS) method

160 Schools

	REML	ML
(Intercept)	12.649	12.650
	(0.149)	(0.148)
meanses	5.864	5.863
	(0.361)	(0.359)
sd(Intercept)	1.624	1.610
sd_Observation	6.258	6.258
AIC	46969.3	46967.1
BIC	46996.8	46994.6
Log.Lik.	-23480.642	-23479.554
REMLcrit	46961.285	

16 Schools

	REML	ML
(Intercept)	12.809	12.808
	(0.504)	(0.471)
meanses	6.577	6.568
	(1.281)	(1.197)
sd(Intercept)	1.726	1.581
sd_Observation	5.944	5.944
AIC	4419.6	4422.2
BIC	4437.7	4440.3
Log.Lik.	-2205.796	-2207.099
REMLcrit	4411.591	

Other Estimation Methods

Generalized estimating equations (GEE)

- Robust to some misspecification and non-normality
- Maybe inefficient in small samples (i.e., with lower power)
- See Snijders & Bosker 12.2; the geepack R package

Markov Chain Monte Carlo (MCMC)/Bayesian

- Researchers set prior distributions for the parameters
 - o Different from "empirical Bayes": Prior coming from the data
- Does not depend on normality of the sampling distributions
 - More stable in small samples with the use of priors
- Can handle complex models
- See Snijders & Bosker 12.1; the MCMCglmm and the brms R packages

Testing

Fixed effects (γ)

- Usually the likelihood-based CI/likelihood-ratio (LRT; χ^2) test is sufficient \circ Require ML (as fixed effects are not part of the likelihood function in REML)
- Small sample (10--50 clusters): Kenward-Roger approximation of degrees of freedom
- Non-normality: Residual bootstrap¹

Random effects (au)

• LRT (with *p* values divided by 2)

[1]: See van der Leeden et al. (2008) and Lai (2021)

Testing Fixed Effects

Likelihood Ratio (Deviance) Test

$$H_0: \gamma = 0$$

Likelihood ratio:
$$\dfrac{L(\gamma=0)}{L(\gamma=\hat{\gamma})}$$

$$\begin{array}{l} \text{Deviance:} -2 \times \log \left(\frac{L(\gamma=0)}{L(\gamma=\hat{\gamma})} \right) \\ = -2 \text{LL}(\gamma=0) - \left[-2 \text{LL}(\gamma=\hat{\gamma}) \right] \\ = \text{Deviance} \mid_{\gamma=0} - \text{Deviance} \mid_{\gamma=\hat{\gamma}} \end{array}$$

ML (instead of REML) should be used

Example

In lme4, you can also use

```
># Linear mixed model fit by maximum likelihood ['lmerMod']
># Formula: mathach ~ (1 | id)
                 BIC logLik deviance df.resid
>#
       AIC
># 47121.81 47142.45 -23557.91 47115.81
                                             7182
. . .
># Linear mixed model fit by maximum likelihood ['lmerMod']
># Formula: mathach ~ meanses + (1 | id)
                 BIC logLik deviance df.resid
>#
        AIC
># 46967.11 46994.63 -23479.55 46959.11
                                             7181
. . .
pchisq(47115.81 - 46959.11, df = 1, lower.tail = FALSE)
># [1] 5.952567e-36
```

anova(m_lv2, ran_int) # Automatically use ML

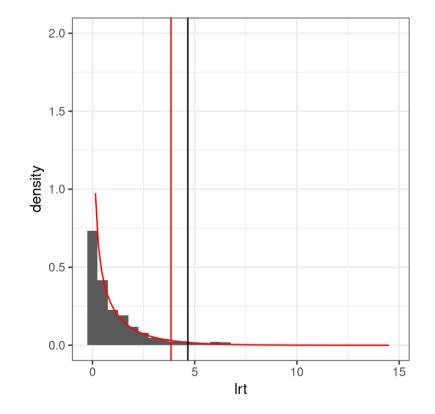
Problem of LRT in Small Samples

The LRT relies on the assumption that the deviance under the null follows a χ^2 distribution, which is not likely to hold in small samples

• Inflated Type I error rates

E.g., 16 Schools

- LRT critical value with $\alpha = .05$: 3.84
- Simulation-based critical value: 4.67



${\it F}$ Test With Small-Sample Correction

It is based on the Wald test (not the LRT):

- $t = \hat{\gamma}/\hat{\mathrm{se}}(\hat{\gamma})$,
- ullet Or equivalently, the $F=t^2$ (for a one-parameter test)

The small-sample correction does two things:

- Adjust $\hat{se}(\hat{\gamma})$ as it tends to be underestimated in small samples
- Determine the critical value based on an F distribution, with an approximate **denominator degrees of** freedom (ddf)

Kenward-Roger (1997) Correction

Generally performs well with < 50 clusters

```
# Wald
                                               # K-R
anova(m_contextual, ddf = "lme4")
                                               anova(m_contextual, ddf = "Kenward-Roger")
># Analysis of Variance Table
                                              ># Type III Analysis of Variance Table with Kenward-
         npar Sum Sq Mean Sq F value
                                                         Sum Sq Mean Sq NumDF DenDF F value
                                              >#
>#
># meanses 1 860.08 860.08 26.400
                                              ># meanses 324.39 324.39 1 15.51 9.9573 0.0
                                              ># ses 1874.34 1874.34 1 669.03 57.5331 1.11
># ses 1 1874.34 1874.34 57.533
                                              ># ---
                                              ># Signif. codes: 0 '***' 0.001 '**' 0.05
```

For meanses, the critical value (and the p value) is determined based on an F(1,15.51) distribution, which has a critical value of

```
qf(.95, df1 = 1, df2 = 15.51)
># [1] 4.517161
```

Testing Random Effects

LRT for Random Slopes

Should you include random slopes?

Theoretically yes unless you're certain that the slopes are the same for every groups

However, frequentist methods usually crash with more than two random slopes

- Test the random slopes one by one, and identify which one is needed
- Bayesian methods are more equipped for complex models

"One-tailed" LRT

LRT (χ^2) is generally a two-tailed test. But for random slopes,

 $H_0: au_1=0$ is a one-tailed hypothesis

A quick solution is to divide the resulting p by 2^1

[1]: Originally proposed by Snijders & Bosker; tested in simulation by LaHuis & Ferguson (2009, https://doi.org/10.1177/1094428107308984)

Example: LRT for au_1^2

Need to divide by 2

```
# Formula: mathach ~ meanses + ses_cmc + (ses_cmc | id)

# Data: hsball

# REML criterion at convergence: 46557.65

...

# Formula: mathach ~ meanses + ses_cmc + (1 | id)

# Pata: hsball

# REML criterion at convergence: 46568.58

...

pchisq(10.92681, df = 2, lower.tail = FALSE)

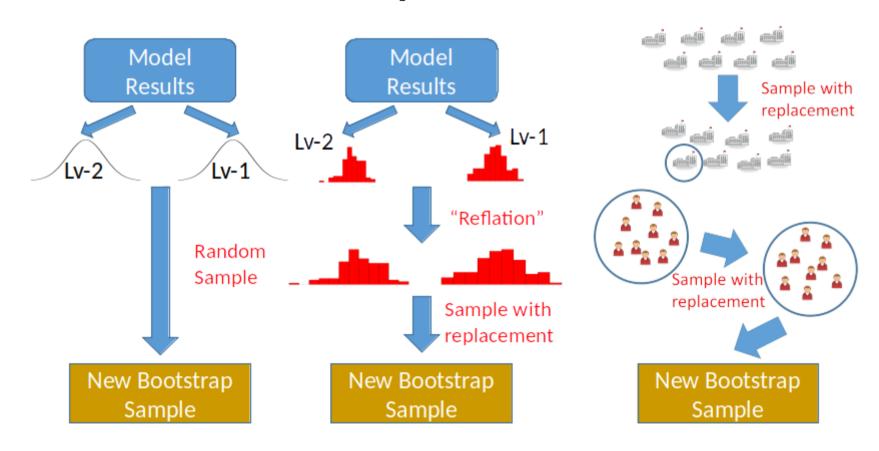
# [1] 0.004239097
```

Multilevel Bootstrap

A simulation-based approach to approximate the sampling distribution of fixed and random effects

- Useful for obtaining CIs
- Especially for statistics that are functions of fixed/random effects (e.g., \mathbb{R}^2)

Parametric, Residual, and Cases bootstrap



In my own work,¹ the residual bootstrap was found to perform best, especially when data are not normally distributed and when the number of clusters is small

See R code for this week

Lai (2021, https://doi.org/10.1080/00273171.2020.1746902)