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Week Learning Objectives
Describe conceptually what likelihood function and maximum likelihood estimation are

Describe the differences between maximum likelihood and restricted maximum likelihood

Conduct statistical tests for fixed effects

Test fixed effects using the F-test with the small-sample correction when the number of clusters is small

Use the likelihood ratio test to test random slopes
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Estimation

Regression: OLS

MLM: Maximum likelihood, Bayesian
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Why should I learn about estimation methods?
Understand software options

Know when to use better methods

Needed for reporting
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Maximum Likelihood EstimationMaximum Likelihood Estimation
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The most commonly used methods in MLM are

maximum likelihood (ML) and restricted maximum likelihood (REML)

># Linear mixed model fit by REML ['lmerMod']
># Formula: Reaction ~ Days + (Days | Subject)
>#    Data: sleepstudy
># REML criterion at convergence: 1743.628
># Random effects:
>#  Groups   Name        Std.Dev. Corr
>#  Subject  (Intercept) 24.741       
>#           Days         5.922   0.07
>#  Residual             25.592       
># Number of obs: 180, groups:  Subject, 18
># Fixed Effects:
># (Intercept)         Days  
>#      251.41        10.47

But what is "Likelihood"?
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Let’s say we want to estimate the population
mean math achievement score 

We need to make some assumptions:

Known SD: 

The scores are normally distributed in the
population

Likelihood

(μ)

σ = 8
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Learning the Parameter From the Sample
Assume that we have scores from 5 representative students

Student Score

1 23

2 16

3 5

4 14

5 7
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Student Score

1 23 0.0133173

2 16 0.0376422

3 5 0.0410201

4 14 0.0440082

5 7 0.0464819

Multiplying them all together:

= Product of the probabilities =

># [1] 4.20634e-08

Likelihood
If we assume that , how likely will we get 5 students with these scores?

prod(dnorm(c(23, 16, 5, 14, 7), mean = 10, s

μ = 10

P (Yi = yi ∣ μ = 10)

P (Y1 = 23, Y2 = 16, Y3 = 5, Y4 = 14, Y5 = 7|μ = 10)
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Student Score

1 23 0.0228311

2 16 0.0464819

3 5 0.0302463

4 14 0.0494797

5 7 0.0376422

Multiplying them all together:

= Product of the probabilities =

># [1] 5.978414e-08

If 

prod(dnorm(c(23, 16, 5, 14, 7), mean = 13, s

μ = 13

P (Yi = yi ∣ μ = 13)

P (Y1 = 23, Y2 = 16, Y3 = 5, Y4 = 14, Y5 = 7|μ = 13)
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Likelihood Function Log-Likelihood (LL) Function

Compute the likelihood for a range of  valuesμ

11 / 33



Maximum Likelihood
 maximizes the (log) likelihood function

Maximum likelihood estimator (MLE)

Estimating 

μ̂ = 13

σ
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Curvature and Standard Errors
N = 5 N = 20
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Estimation Methods for MLMEstimation Methods for MLM
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For MLM
Find s, s, and  that maximizes the likelihood function

Here's the log-likelihood function for the coefficient of meanses (see code in the provided Rmd):

γ τ σ

ℓ(γ, τ , σ; y) = − {log |V(τ , σ)| + (y − Xγ)⊤V
−1(τ , σ)(y − Xγ)} + K

1

2
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># iteration: 1
>#     f(x) = 47022.519159
># iteration: 2
>#     f(x) = 47151.291766
># iteration: 3
>#     f(x) = 47039.480137
># iteration: 4
>#     f(x) = 46974.909593
># iteration: 5
>#     f(x) = 46990.872588
># iteration: 6
>#     f(x) = 46966.453125
># iteration: 7
>#     f(x) = 46961.719993
># iteration: 8
>#     f(x) = 46965.890703
># iteration: 9
>#     f(x) = 46961.367013
># iteration: 10

Numerical Algorithms

m_lv2 <- lmer(mathach ~ meanses + (1 | id), 
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ML vs. REML
REML has corrected degrees of freedom for the variance component estimates (like dividing by  instead
of by  in estimating variance)

REML is generally preferred in smaller samples

The difference is small with large number of clusters

Technically speaking, REML only estimates the variance components1

N − 1
N

[1] The fixed effects are integrated out and are not part of the likelihood function. They are solved in a second step, usually
by the generalized least squares (GLS) method

17 / 33



160 Schools

REML ML

(Intercept) 12.649 12.650

(0.149) (0.148)

meanses 5.864 5.863

(0.361) (0.359)

sd__(Intercept) 1.624 1.610

sd__Observation 6.258 6.258

AIC 46969.3 46967.1

BIC 46996.8 46994.6

Log.Lik. −23480.642 −23479.554

REMLcrit 46961.285

16 Schools

REML ML

(Intercept) 12.809 12.808

(0.504) (0.471)

meanses 6.577 6.568

(1.281) (1.197)

sd__(Intercept) 1.726 1.581

sd__Observation 5.944 5.944

AIC 4419.6 4422.2

BIC 4437.7 4440.3

Log.Lik. −2205.796 −2207.099

REMLcrit 4411.591
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Other Estimation Methods
Generalized estimating equations (GEE)

Robust to some misspecification and non-normality
Maybe inefficient in small samples (i.e., with lower power)
See Snijders & Bosker 12.2; the geepack R package

Markov Chain Monte Carlo (MCMC)/Bayesian

Researchers set prior distributions for the parameters
Different from "empirical Bayes": Prior coming from the data

Does not depend on normality of the sampling distributions
More stable in small samples with the use of priors

Can handle complex models
See Snijders & Bosker 12.1; the MCMCglmm and the brms R packages
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TestingTesting
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Fixed effects 

Usually the likelihood-based CI/likelihood-ratio (LRT; ) test is sufficient
Require ML (as fixed effects are not part of the likelihood function in REML)

Small sample (10--50 clusters): Kenward-Roger approximation of degrees of freedom
Non-normality: Residual bootstrap1

Random effects 

LRT (with  values divided by 2)

(γ)

χ2

(τ)

p

[1]: See van der Leeden et al. (2008) and Lai (2021)
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Testing Fixed EffectsTesting Fixed Effects
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Likelihood Ratio (Deviance) Test

Likelihood ratio: 

Deviance: 


= 

= 

ML (instead of REML) should be used

H0 : γ = 0

L(γ = 0)

L(γ = γ̂)

−2 × log( )
L(γ=0)

L(γ=γ̂)

−2LL(γ = 0) − [−2LL(γ = γ̂)]
Deviance ∣γ=0 −Deviance∣γ=γ̂
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Example
...
># Linear mixed model fit by maximum likelihood  ['lmerMod']
># Formula: mathach ~ (1 | id)
>#       AIC       BIC    logLik  deviance  df.resid 
>#  47121.81  47142.45 -23557.91  47115.81      7182 
...

...
># Linear mixed model fit by maximum likelihood  ['lmerMod']
># Formula: mathach ~ meanses + (1 | id)
>#       AIC       BIC    logLik  deviance  df.resid 
>#  46967.11  46994.63 -23479.55  46959.11      7181 
...

pchisq(47115.81 - 46959.11, df = 1, lower.tail = FALSE)

># [1] 5.952567e-36

In lme4, you can also use

anova(m_lv2, ran_int)  # Automatically use ML
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The LRT relies on the assumption that the deviance
under the null follows a  distribution, which is
not likely to hold in small samples

Inflated Type I error rates

E.g., 16 Schools

LRT critical value with : 3.84
Simulation-based critical value: 4.67

Problem of LRT in Small Samples

χ2

α = .05

25 / 33



 Test With Small-Sample Correction
It is based on the Wald test (not the LRT):

,
Or equivalently, the  (for a one-parameter test)

The small-sample correction does two things:

Adjust  as it tends to be underestimated in small samples
Determine the critical value based on an  distribution, with an approximate denominator degrees of
freedom (ddf)

F

t = γ̂/ŝe(γ̂)
F = t2

ŝe(γ̂)
F
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# Wald
anova(m_contextual, ddf = "lme4")

># Analysis of Variance Table
>#         npar  Sum Sq Mean Sq F value
># meanses    1  860.08  860.08  26.400
># ses        1 1874.34 1874.34  57.533

# K-R 
anova(m_contextual, ddf = "Kenward-Roger")

># Type III Analysis of Variance Table with Kenward-
>#          Sum Sq Mean Sq NumDF  DenDF F value    P
># meanses  324.39  324.39     1  15.51  9.9573  0.00
># ses     1874.34 1874.34     1 669.03 57.5331 1.116
># ---
># Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 

Kenward-Roger (1997) Correction
Generally performs well with < 50 clusters

For meanses, the critical value (and the  value) is determined based on an  distribution, which
has a critical value of

qf(.95, df1 = 1, df2 = 15.51)

># [1] 4.517161

p F (1, 15.51)
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Testing Random EffectsTesting Random Effects
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Should you include random slopes?

Theoretically yes unless you're certain that the
slopes are the same for every groups

However, frequentist methods usually crash with
more than two random slopes

Test the random slopes one by one, and identify
which one is needed
Bayesian methods are more equipped for
complex models

"One-tailed" LRT

LRT  is generally a two-tailed test. But for
random slopes,

 is a one-tailed hypothesis

A quick solution is to divide the resulting  by 21

LRT for Random Slopes

(χ2)

H0 : τ1 = 0

p

[1]: Originally proposed by Snijders & Bosker; tested in
simulation by LaHuis & Ferguson (2009,
https://doi.org/10.1177/1094428107308984)
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...
># Formula: mathach ~ meanses + ses_cmc + (ses_cmc | id)
>#    Data: hsball
># REML criterion at convergence: 46557.65
...

...
># Formula: mathach ~ meanses + ses_cmc + (1 | id)
>#    Data: hsball
># REML criterion at convergence: 46568.58
...

G Matrix

Example: LRT for 

pchisq(10.92681, df = 2, lower.tail = FALSE)

># [1] 0.004239097

Need to divide by 2

τ 2
1

[
τ 2

0

τ01 τ 2
1

]

[
τ 2

0

0 0
]
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Multilevel BootstrapMultilevel Bootstrap
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A simulation-based approach to approximate the sampling distribution of fixed and random effects

Useful for obtaining CIs
Especially for statistics that are functions of fixed/random effects (e.g., )

Parametric, Residual, and Cases bootstrap

R2
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In my own work,1 the residual bootstrap was found to perform best, especially when data are not normally
distributed and when the number of clusters is small

See R code for this week

Lai (2021, https://doi.org/10.1080/00273171.2020.1746902)
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