Adding a Level-1 Predictor

PSYC 575

August 25, 2020 (updated: 9 September 2021)

Week Learning Objectives

- Explain what the **ecological fallacy** is
- Use **cluster-mean/group-mean centering** to **decompose** the effect of a lv-1 predictor
- Define **contextual effects**
- Explain the concept of random slopes
- Analyze and interpret cross-level interaction effects

Adding Level-1 Predictors

- E.g., student's SES
- Both predictor (ses) and outcome (mathach) are at level 1
- OLS still has Type I error inflation problem
 - Unless ICC = 0 for the predictor
- MLM can answer additional research questions
 - Within-Between effects and contextual effects
 - Random (varying) slopes
 - Cross-level interactions

Research Questions

- Does math achievement vary across schools? How much is the variation?
- Do schools with higher mean SES have students with higher math achievement?
- Do students with higher SES have higher math achievement? Is the relation similar at the individual and cluster levels? Is this relation similar across schools?
- Is the relation between SES and math achievement moderated by some types of schools (e.g., Catholic vs. Public, high mean SES vs low mean SES)?

The Same Predictor?

- Is it different to use MEANSES vs. SES as predictor?
 - MEANSES \rightarrow MATHACH is positive
 - $\gamma_{01} = 5.72$ (*SE* = 0.18)
- Should the coefficient be the same with SES?

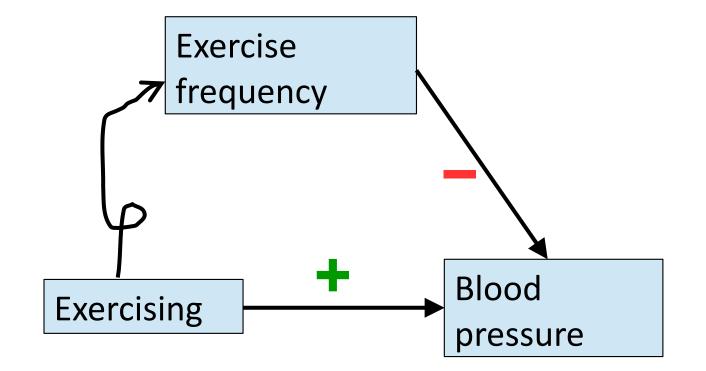
Ecological Fallacy

Ecological Fallacy

- Robinson's paradox (% immigrant and % illiterate)
- Errors in assuming that relationships at one level are the same moving to another level
- Failure to account for the clustering structure
 - → <u>Misleading results</u>

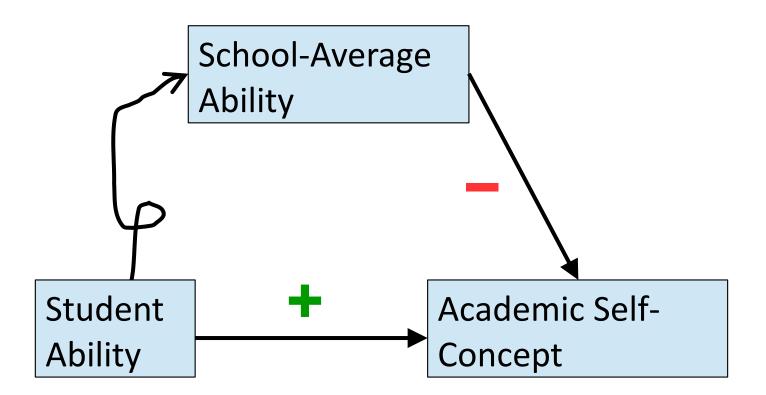
"Same" Predictor, Different Effects

• Example: Exercise and blood pressure

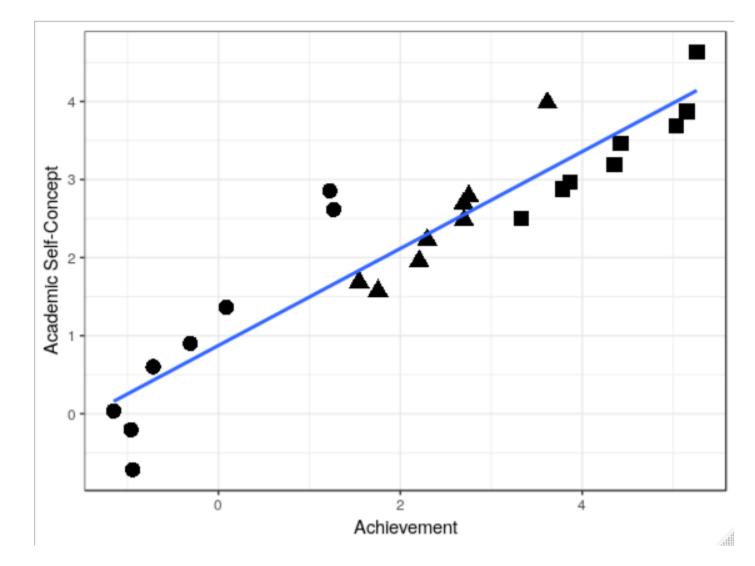


"Same" Predictor, Different Effects

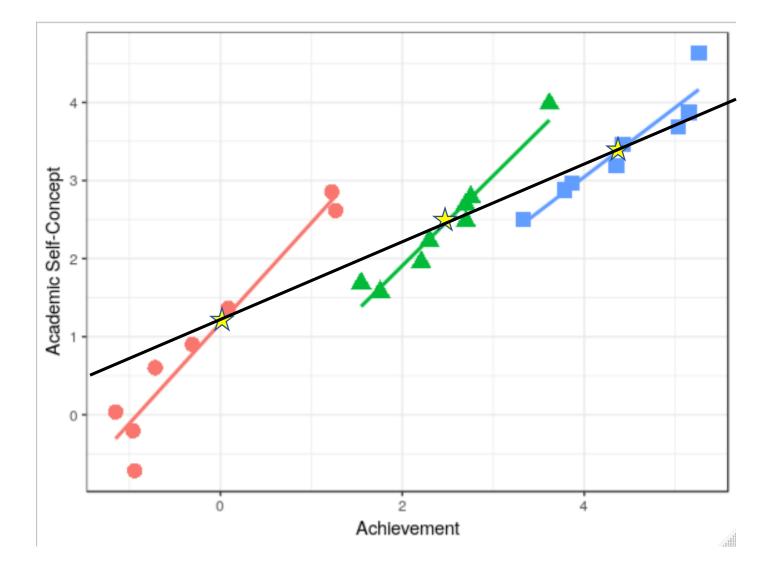
• Example: Big-Fish-Little-Pond Effect (Marsh & Parker, 1984)



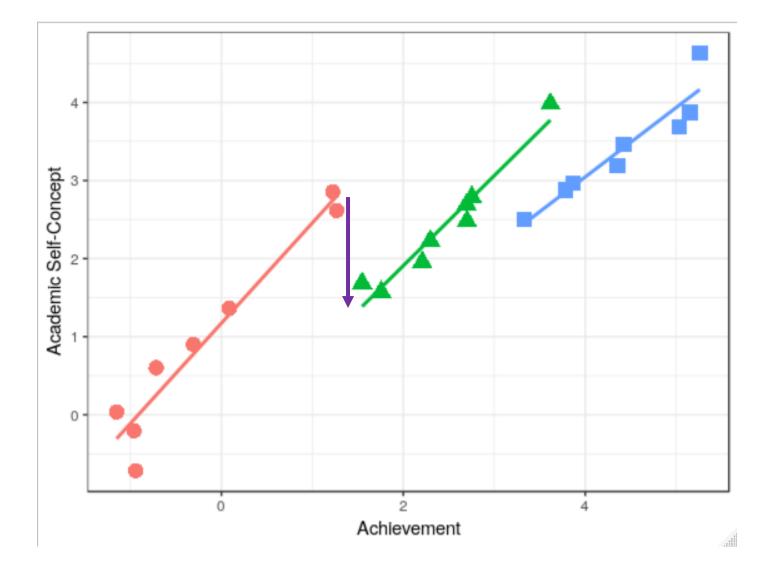
Overall Effect



Within & Between Effects



Within & Contextual Effects



Never simply include a level-1 predictor

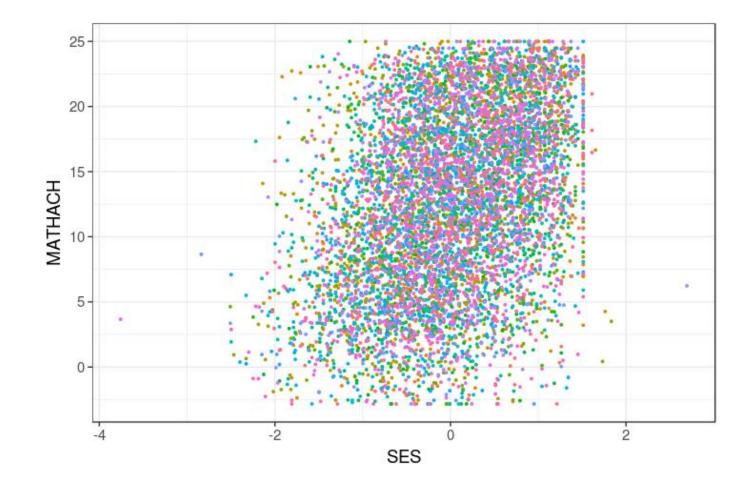
Unless it has the same values for every cluster

Additional reference: Antonakis, Bastardoz & Ronkko (2021, https://doi.org/10.1177/1094428119877457)

Two Approaches

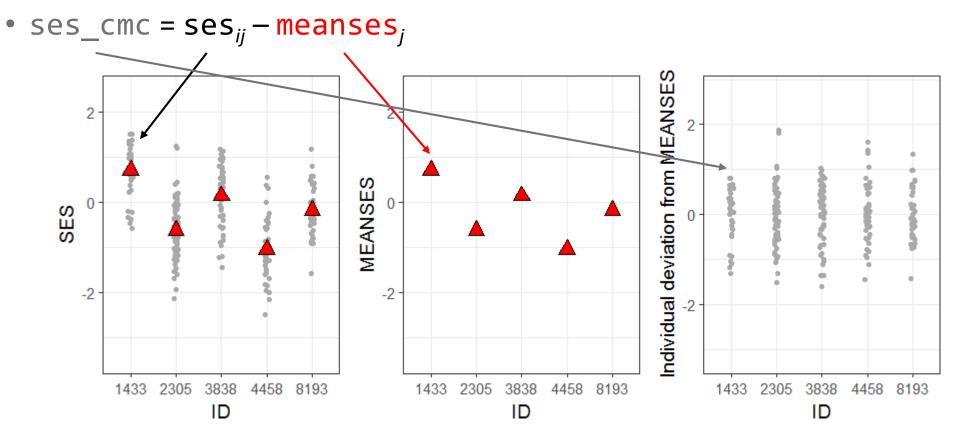
- Both involves computing the cluster means
 - E.g., ses \rightarrow meanses
- 1. Cluster-mean centered (cmc) variable + cluster mean
 - Between-within method
 - Decompose into between-within effects
- 2. Raw/uncentered predictor + cluster mean
 - Study contextual effects (i.e., between minus within)

mathach vs. ses

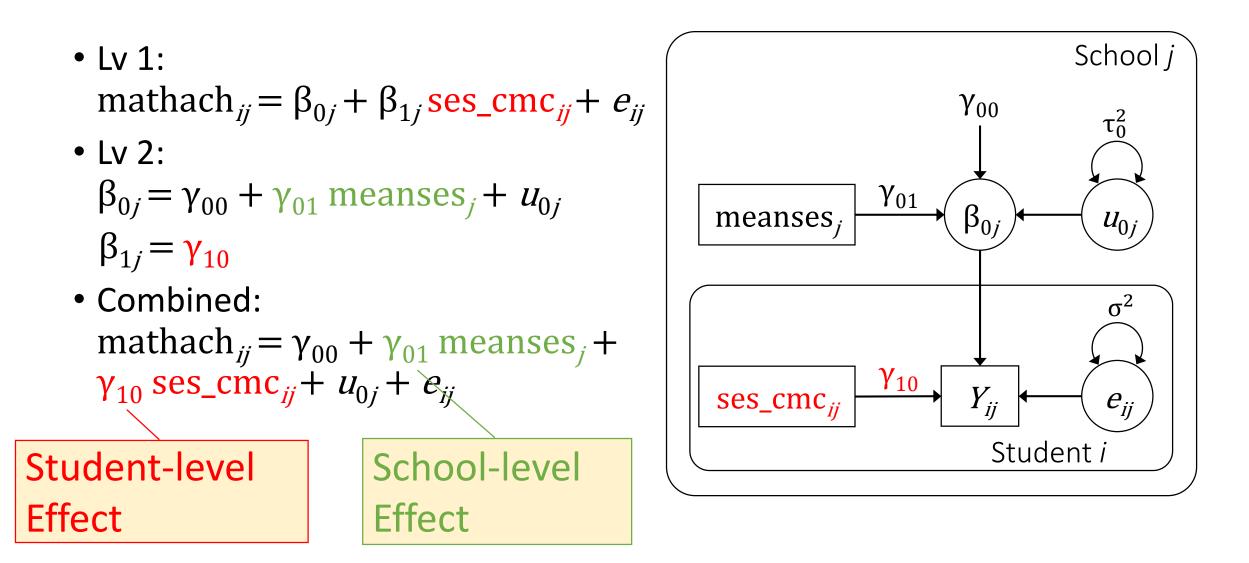


Decomposing Into Lv-2 and Lv-1 Components

• Group-mean centering



Between-Within Decomposition



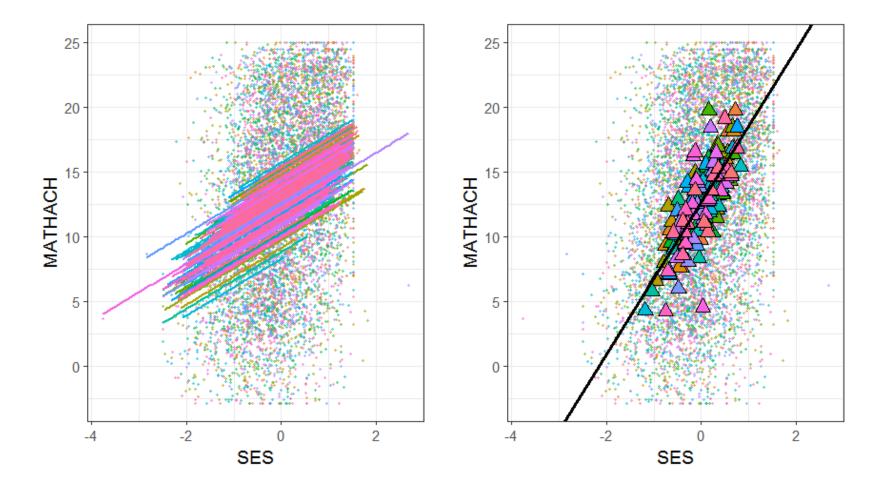
```
># Linear mixed model fit by REML ['lmerMod']
># Formula: mathach ~ meanses + ses_cmc + (1 | id)
># Data: hsball
```

```
># Fixed effects:
```

>#	Estimate	Std. Error	t value
<pre>># (Intercept)</pre>	12.6481	0.1494	84.68
># meanses	5.8662	0.3617	16.22
># ses_cmc	2.1912	0.1087	20.16

The student-level effect is 2.19 The school-level effect is 5.87

Visualizing the Difference



Interpret the Coefficients

- Student A
 - From a school of average SES
 - SES level at the school mean

→ ses = ____, meanses = ____, ses_cmc = ____

Predicted mathach = ____ + ___ (___) + ___ (___)

Interpret the Coefficients

- Student B
 - From a school of average SES
 - SES level 1 unit higher than the school mean
 - → meanses = ___, ses_cmc = ___
- Predicted mathach = ____ + ___ (___) + ___ (___)

Interpret the Coefficients (Cont'd)

- Student C
 - From a high SES school (one unit higher than average)
 - SES level 1 unit below the school mean
 - → meanses = ___, ses_cmc = ____
- Predicted mathach = ____ + ___ (___) + ___ (___)

Contextual Effects

Contextual Effect¹

- γ_{01} γ_{10} = 5.87 2.19 = 3.68
- Effect of School SES (context) on individuals:
 - Expected difference in achievement between two students with same SES, but from schools with a 1 unit difference in meanses

># Linear mixed model fit by REML ['lmerMod']
># Formula: mathach ~ meanses + ses + (1 | id)
># Data: hsball

># Fixed effects:

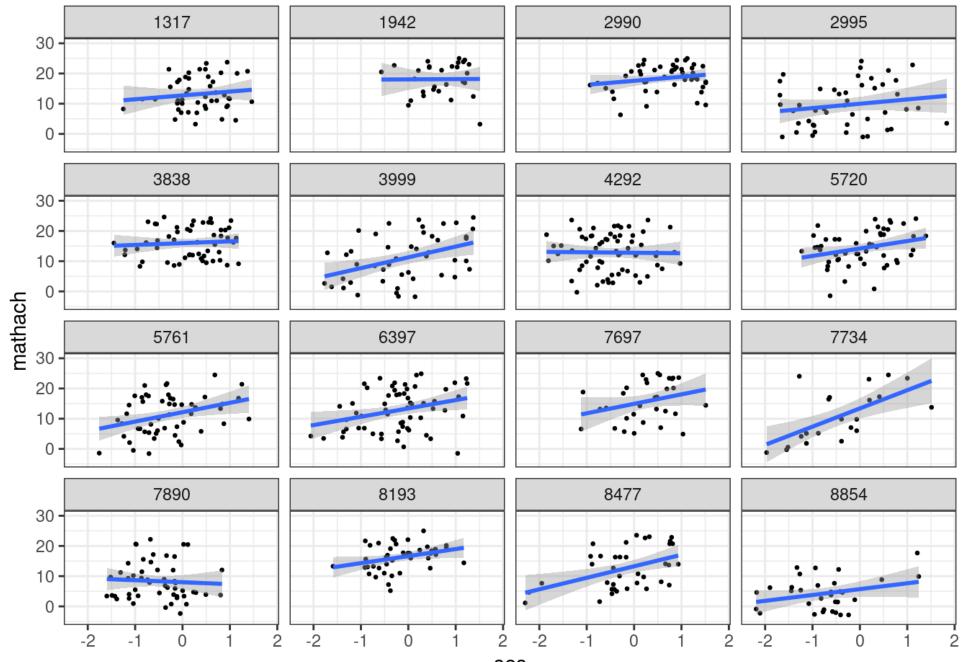
>#	Estimate	Std. Error	t value
<pre>># (Intercept)</pre>	12.6613	0.1494	84.763
># meanses	3.6750	0.3777	9.731
># ses	2.1912	0.1087	20.164

The student-level effect is 2.19; the contextual effect = 3.68 = 5.87 - 2.19

Random Slopes/Random Coefficients

Research Questions

- Does math achievement varies across schools? How much is the variation?
- Do schools with higher mean SES have students with higher math achievement?
- Do students with higher SES have higher math achievement? Is the relation similar at the individual and cluster levels? Is this relation similar across schools?
- Is the relation between SES and math achievement moderated by some types of schools (e.g., Catholic vs. Public, high mean SES vs low mean SES)?

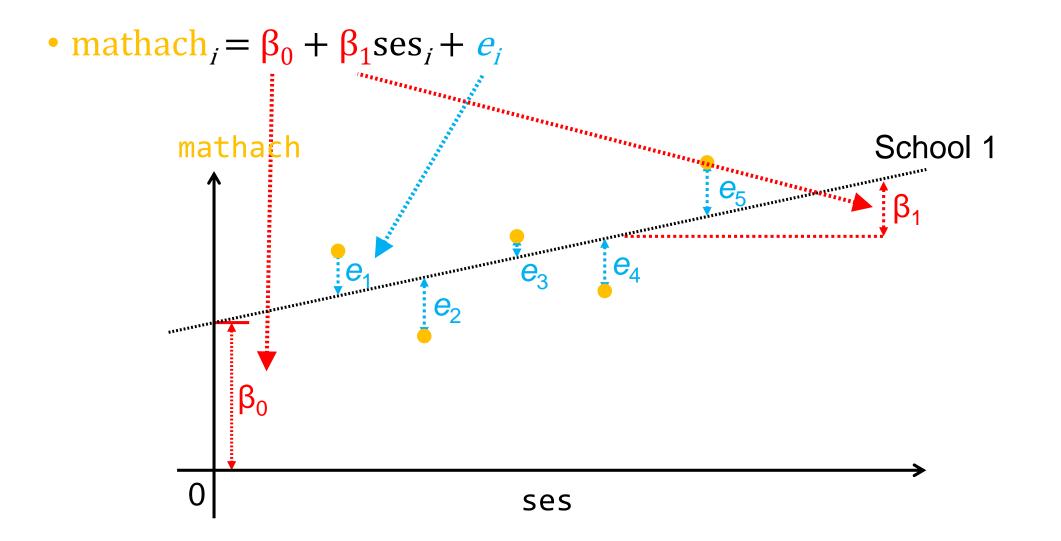


ses

Varying Regression Lines

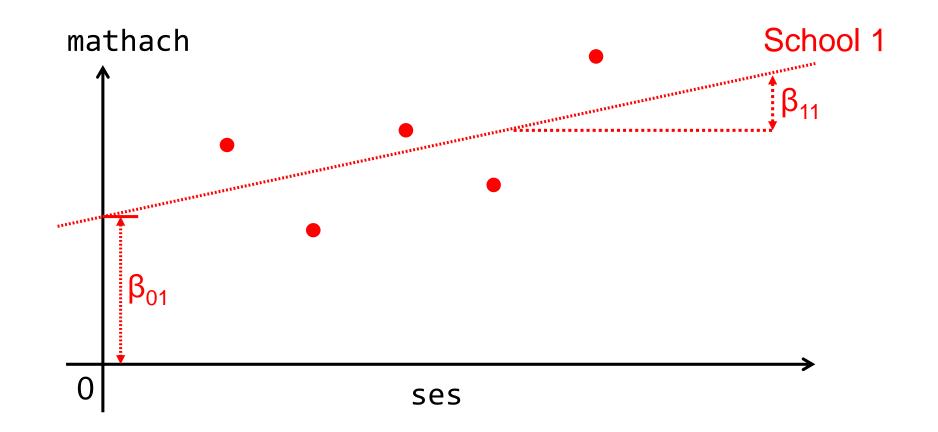
- Decomposing effect model
 - Assumes constant slope across schools for ses → mathach
- Instead, one can investigate whether that relation changes across schools

Let's Focus on One School



Multi-Level Model (MLM)

• School 1: mathach_{*i*1} = $\beta_{01} + \beta_{11} \operatorname{ses}_{i1} + e_{i1}$

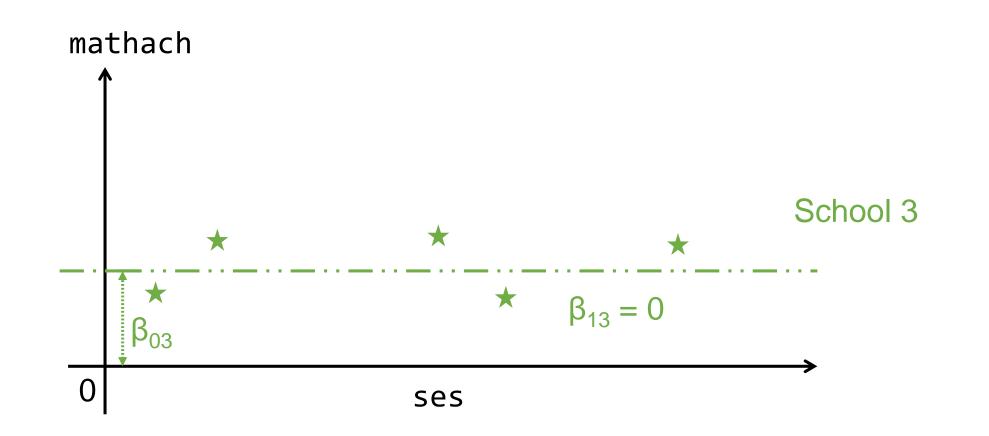


Consider a Second School

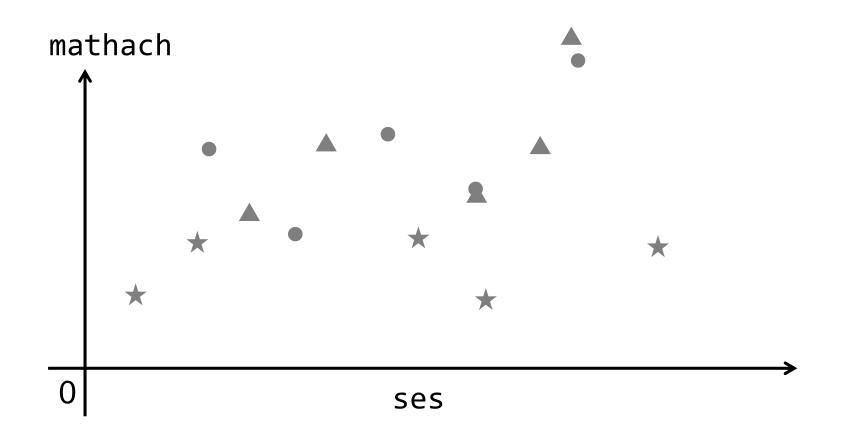
• School 2: mathach_{i2} = $\beta_{02} + \beta_{12} \operatorname{ses}_{i2} + e_{i2}$ School 2 mathach β_{12} B₀₂ ses

Consider a Third School

• School 3: mathach_{i3} = $\beta_{03} + \beta_{13} \text{ses}_{i3} + e_{i3}$

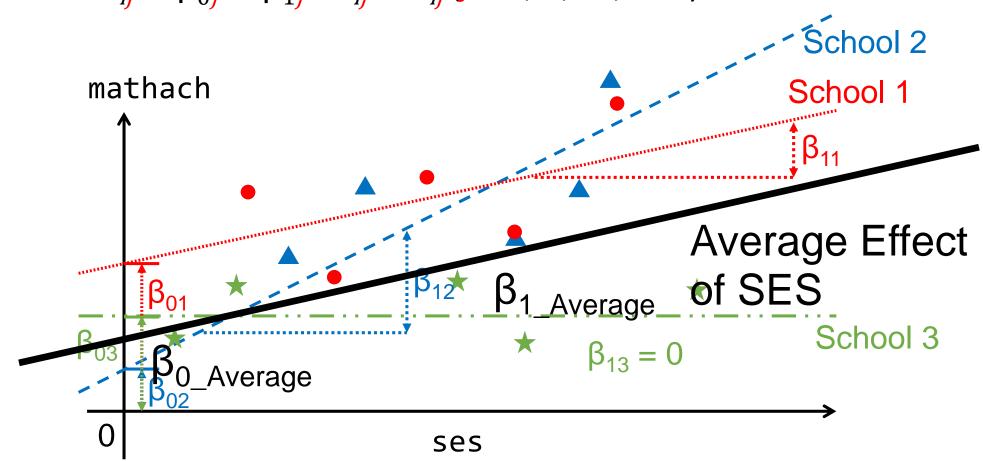


Combining All Schools

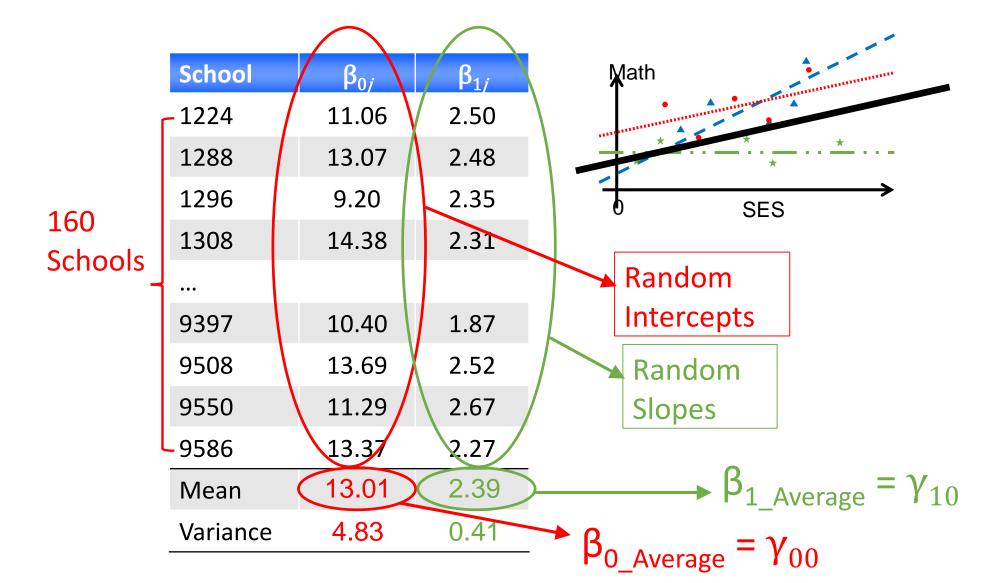


Combining All Schools

• mathach_{*ij*} = $\beta_{0j} + \beta_{1j} ses_{ij} + e_{ij} (j = 1, 2, ..., 160)$



Combining All Schools



Random-Coefficient Model

- Lv 1:
 - mathach_{ij} = $\beta_{0j} + \beta_{1j} \operatorname{ses_cmc}_{ij} + e_{ij}$
- Lv 2:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} \text{ meanses}_j + u_{0j}$
 - $\beta_{1j} = \gamma_{10} + u_{1j}$
- Combined:
 - mathach_{ij} = $\gamma_{00} + \gamma_{01}$ meanses_j + γ_{10} ses_cmc_{ij} + u_{0j} + u_{1j} ses_cmc_{ij} + e_{ij} Deviation of school j's slope from the average

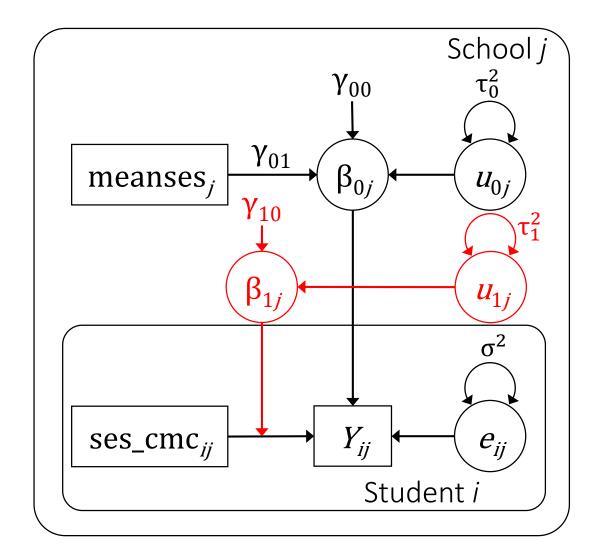
Average slope

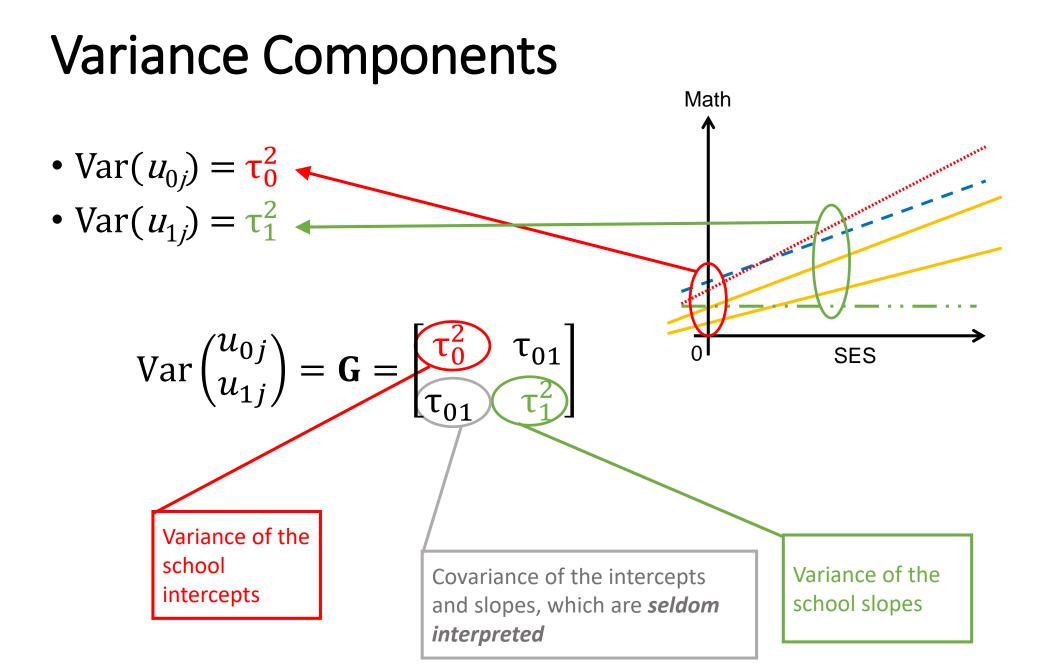
of SES

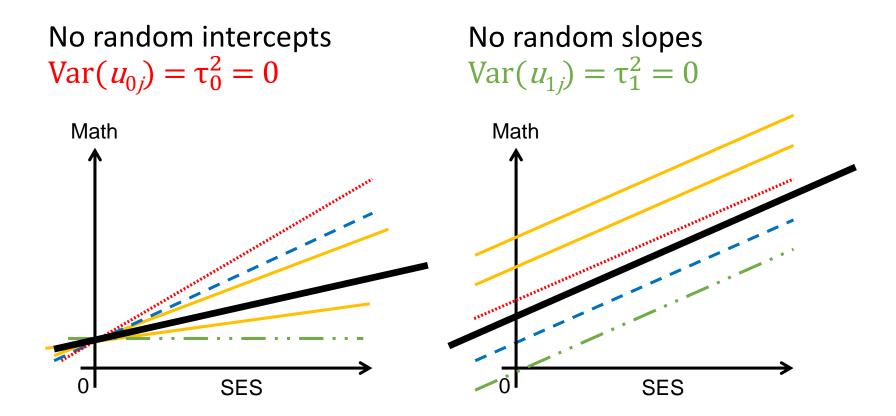
Centering

- Raudenbush & Bryk (2002) noted that <u>slope variance</u> were <u>better</u> <u>estimated with cluster mean centering</u>
 - However, Snijders & Bosker (5.3.1) suggested it should be based on theory
- Remember to add the cluster means
- See also consult Enders & Tofighi (2007)¹

Path Diagram







Full Equations

$$\begin{aligned} \text{mathach}_{ij} &= \gamma_{00} + \gamma_{01} \text{meanses}_j + \gamma_{10} \text{ses_cmc}_{ij} \\ &+ u_{0j} + u_{1j} \text{ses_cmc}_{ij} + e_{ij} \end{aligned}$$

$$\begin{pmatrix} u_{0j} \\ u_{1j} \end{pmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \tau_0^2 & \tau_{01} \\ \tau_{01} & \tau_1^2 \end{bmatrix} \right)$$

$$e_{ij} \sim N(0, \sigma)$$

Look at the SEs of Fixed Effects

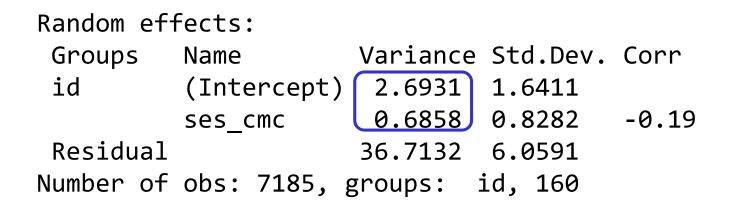
> lmer(mathach ~ meanses + ses_cmc + (ses_cmc | id), data = hsball)

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	12.6454	0.1492	84.74
meanses	5.8963	0.3600	16.38
ses_cmc	2.1913	0.1280	17.12

SE = 0.109 when random
 slopes not included
 → <u>underestimated</u>

Random Effect Estimates



•
$$\tau_0^2 = 2.69 = variance$$

of intercepts

•
$$\tau_1^2 = 0.69 = \text{slope}$$

variance

Interpreting Random Slopes

- Average slope = γ_{10} = 2.19
- *SD* of slopes = τ_1 = 0.83
- 68% Plausible range

•
$$\gamma_{10} + / - \tau_1 = [\gamma_{10} - \tau_1, \gamma_{10} + \tau_1]$$

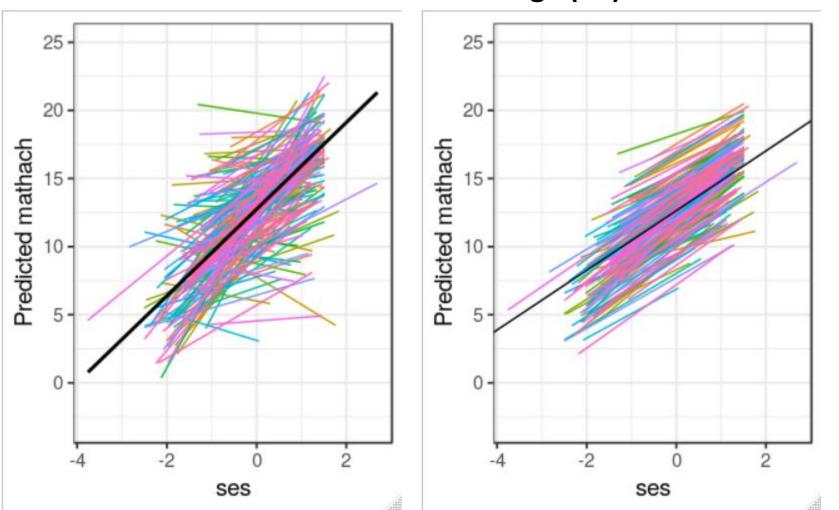
= [_____, ___]

For majority of schools, SES and achievement are positively associated, with regression coefficients between _____ and _____

Visualize the Varying Slopes

OLS

Shrinkage (EB)



Cross-Level Interaction

Research Questions

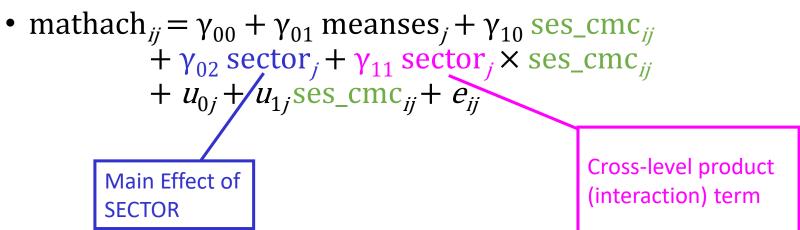
- Does math achievement vary across schools? How much is the variation?
- Do schools with higher mean SES have students with higher math achievement?
- Do students with higher SES have higher math achievement? Is the relation similar at the individual and cluster levels? Is this relation similar across schools?
- Is the relation between SES and math achievement moderated by some types of schools (e.g., <u>Catholic vs. Public</u>, high mean SES vs low mean SES)?

Cross-Level Interaction

- Whether school-level variables <u>moderate</u> student-level relationships between variables
- Also called an intercepts and slopes-as-outcomes model
- Let's add another school-level variable: sector
 - 1 = Catholic (*n* = 70), 0 = Public (*n* = 90)

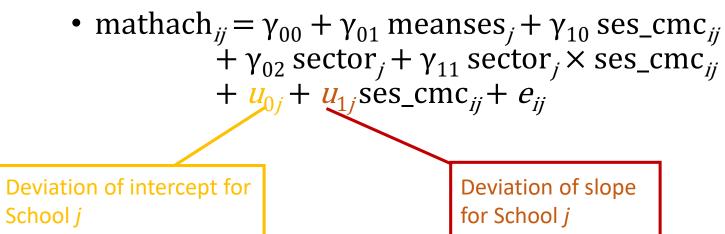
Model Equations

- Lv 1:
 - mathach_{*ij*} = $\beta_{0j} + \beta_{1j} \operatorname{ses_cmc}_{ij} + e_{ij}$
- Lv 2:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} \text{ meanses}_j + \gamma_{02} \text{ sector}_j + u_{0j}$
 - $\beta_{1j} = \gamma_{10} + \gamma_{11} \operatorname{sector}_j + u_{1j}$
- Combined:



Model Equations (cont'd)

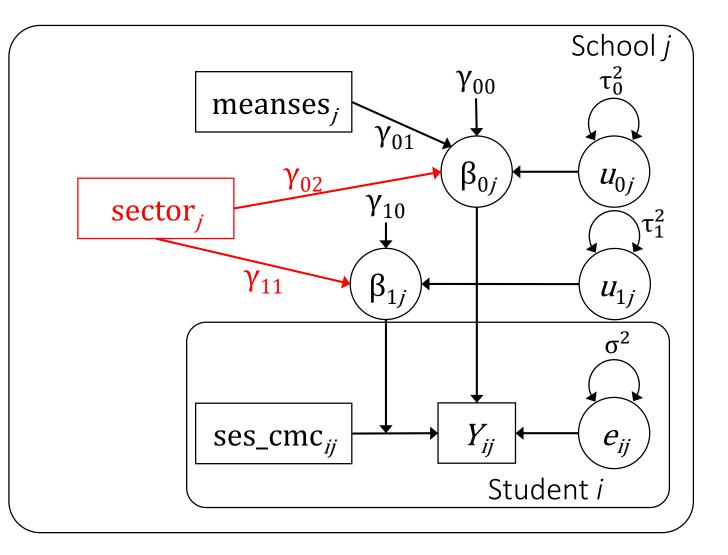
- Lv 1:
 - mathach_{*ij*} = $\beta_{0j} + \beta_{1j} \operatorname{ses_cmc}_{ij} + e_{ij}$
- Lv 2:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} \text{ meanses}_j + \gamma_{02} \text{ sector}_j + \boldsymbol{u}_{0j}$
 - $\beta_{1j} = \gamma_{10} + \gamma_{11} \operatorname{sector}_j + \boldsymbol{u}_{1j}$
- Combined:



Path Diagram

$$\begin{pmatrix} u_{0j} \\ u_{1j} \end{pmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \tau_0^2 & \tau_{01} \\ \tau_{01} & \tau_1^2 \end{bmatrix} \right)$$

$$e_{ij} \sim N(0, \sigma)$$



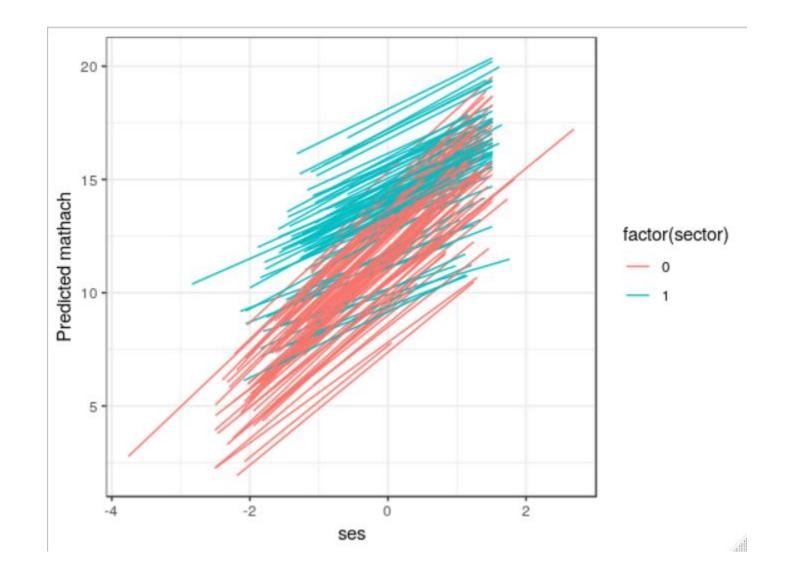
Fixed Effect Estimates

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	12.0846	0.1987	60.81
meanses	5.2450	0.3682	14.24
sectorCatholic	1.2523	0.3062	4.09
ses_cmc	2.7877	0.1559	17.89
<pre>sectorCatholic:ses_cmc</pre>	-1.3478	0.2348	-5.74

Average slope for SES is estimated as 2.79 for Public schools (i.e., sector = 0) Average slope for SES is estimated as 2.79 – 1.35 = <u>1.44 for Catholic schools (i.e.,</u> sector = 1)

Plot the Interaction



Things to Remember

- A level-1 predictor can have <u>differential relationships</u> with the outcome, depending on the level of analysis
 - Ecological fallacy: assume constant relationship across levels
- Cluster/group-mean centering: decompose a level-1 predictor into its cluster means and deviations from the cluster means
- MLM provides a way to efficiently model variability of regression lines (i.e., <u>intercepts</u> and <u>slopes</u>) across clusters
 - Through the use of random slopes/coefficients
- Cross-level interaction
 - = Including a lv-2 predictor in the slope equation