The Random Intercept Model
 PSYC 575
 August 6, 2020 (updated: 5 September 2021)

Week Learning Objectives

- Explain the components of a random intercept model
- Interpret intraclass correlations
- Use the design effect to decide whether MLM is needed
- Explain why ignoring clustering (e.g., regression) leads to inflated chances of Type I errors
- Describe how MLM pools information to obtain more stable inferences of groups

Data 1982 High School and Beyond Survey ${ }^{1}$

- 7,185 students (10-12 ${ }^{\text {th }}$ graders) from 160 schools (90 public and 70 Catholic)
- Level 1: Student
- id: group identifier
- minority: (1 = minority, $0=$ not $)$
- female: 1 = female, $0=$ male
- ses
- mathach: Mathematics achievement
- Level 2: School
- size: school size
- sector (1 = Catholic, $0=$ Public)
- pracad: proportion in academic track
- disclim: disciplinary climate
- himnty: 1 = > 40\% minority, 0 = < 40\% minority
- meanses: mean of Lv-1 SES

	ID $*$	MINORITY	FEMALE	SES *	MATHACH	SIZE *	SECTOR	PRACAD	DISCLIM	HIMINTY	MEANSES
1	1224	0	1	-1.528	5.876	842	0	0.35	1.597	0	-0.428
2	1224	0	1	-0.588	19.708	842	0	0.35	1.597	0	-0.428
3	1224	0	0	-0.528	20.349	842	0	0.35	1.597	0	-0.428
4	1224	0	0	-0.668	8.781	842	0	0.35	1.597	0	-0.428
5	1224	0	0	-0.158	17.898	842	0	0.35	1.597	0	-0.428
6	1224	0	0	0.022	4.583	842	0	0.35	1.597	0	-0.428
7	1224	0	1	-0.618	-2.832	842	0	0.35	1.597	0	-0.428
8	1224	0	0	-0.998	0.523	842	0	0.35	1.597	0	-0.428
9	1224	0	1	-0.888	1.527	842	0	0.35	1.597	0	-0.428
10	1224	0	0	-0.458	21.521	842	0	0.35	1.597	0	-0.428

Student-level variables

	ID	MINORITY	FEMALE	SES	MATHACH
996	2458	-	-	\cdots	$-\ldots$
997	2458	1	0.852	22.743	
998	2458	1	1	0.262	17.205
999	2458	1	1	0.052	12.071
1000	2458	1	1	-0.468	19.161
1001	2458	1	1	-0.268	12.332
1002	2458	1	1	1.512	22.681
1003	2458	1	1	0.182	4.928
1004	2458	0	1	0.242	9.142
1005	2458	1	1.072	24.488	
		1	1.172	13.666	

SIZE	SECTOR	PRACAD	DISCLIM	HIMINTY	MEANSES
$-\ldots$	-	..-	-	1	
545	1	0.89	-1.484	1	0.234
545	1	0.89	-1.484	1	0.234
545	1	0.89	-1.484	1	0.234
545	1	0.89	-1.484	1	0.234
545	1	0.89	-1.484	1	0.234
545	1	0.89	-1.484	1	0.234
545	1	0.89	-1.484	1	0.234
545	1	0.89	-1.484	1	0.234
545	1	0.89	-1.484	1	0.234
545	1	0.89	-1.484	1	0.234

0.34

0.53
 0.19

OROQ-0

Research Questions

- Does math achievement vary across schools? How much is the variation?
- Do schools with higher mean SES have students with higher math achievement?

Random Intercept Model

(Unconditional) Random Intercept Model

- Student level (Lv 1)
- mathach ${ }_{i j}=\beta_{0 j}+e_{i j}$

(Unconditional) Random Intercept Model

- School level (Lv 2)
- $\beta_{0 j}=\gamma_{00}+u_{0 j}$

(Unconditional) Random Intercept Model

- Student level (Lv 1)
- mathach $_{i j}=\beta_{0 j}+e_{i j}$
- School level (Lv 2)
- $\beta_{0 j}=\gamma_{00}+u_{0 j}$

Combined:
mathach $_{i j}=\gamma_{00}+u_{0 j}+e_{i j}$
Score of student i in school j
$=$ Grand mean $\left(\gamma_{00}\right)+$ school deviation $\left(u_{0 j}\right)$

+ student deviation $\left(e_{i j}\right)$

Model Diagram

- Student level (Lv 1)
- mathach ${ }_{i j}=\beta_{0 j}+e_{i j}, \quad e_{i j} \sim N(0, \sigma)$
- School level (Lv 2)
- $\beta_{0 j}=\gamma_{00}+u_{0 j}, \quad u_{0 j} \sim N\left(0, \tau_{0}\right)$
- Combined:
- mathach ${ }_{i j}=\gamma_{00}+u_{0 j}+e_{i j}$

Decomposing School- and Student-Level Information

$$
\text { - mathach = School info }+\quad+\text { Student info }
$$

Terminology

- Fixed effects (γ): constant for everyone
- Random effects ($e_{i j}, u_{0}$): varies for different observations/clusters
- Describe by some probability distributions (e.g., normal)
- Variance components: variance of random effects

Fixed Effects (R Output)

Intraclass Correlation

Intraclass Correlations (ICC; ρ)

- Strongly Correlated

Student A Student B

Genetic Information

- ICC = . 8
- ICC =

1. Proportion of variance due to the higher (school-) level
2. Average correlation between observations (students) in the same cluster (school)

Variance Components

- $\operatorname{Var}\left(u_{0}\right)=\tau_{0}^{2}=$ between-school variance
- $\operatorname{Var}\left(e_{i j}\right)=\sigma^{2}=$ within-school variance
- ICC:

$$
\rho=\frac{\tau_{0}^{2}}{\tau_{0}^{2}+\sigma^{2}}
$$

- Typical ICC = .1 to .25 for educational performance ${ }^{1}$
- Higher ICCs for repeated measures and longitudinal studies

R Output

```
># Random effects:
\begin{tabular}{|c|c|c|c|c|}
\hline >\# & Groups & Name & Varia & Std Dev \\
\hline >\# & id & (Intercept) & 8.614 & 2.935 \\
\hline >\# & Residual & & 39.148 & 6.257 \\
\hline & Number & 7185 & oups: & id, 160 \\
\hline
\end{tabular}
```

> Variance of school means $=8.61$ Variance of individual scores \quad within a school $=39.15$
> ICC $=8.61 /(8.61+39.15)=\underline{\mathbf{0 . 1 8}}$

Question: Does math achievement varies across schools? How much is the variation?

- Yes, there is evidence that student's math achievement varies across schools.
- Variability at the school level accounts for 18% of the total variability of math achievement

Empirical Bayes Estimates

MLM Borrows Information

- $\beta_{0 j}=$ (population) mean math achievement of school j
- Most straightforward way to estimate $\beta_{0 j}$:
- Take the average of everyone in the sample in school j
- It may be unstable in small samples
- Instead, MLM borrows information from other schools

Also called Shrinkage estimates, Best unbiased linear predictor (BLUP), Posterior modes

Also called Shrinkage estimates, Best unbiased linear predictor (BLUP), Posterior modes

Empirical Bayes "Estimates"

$$
\hat{\beta}_{0 j}^{\mathrm{EB}}=\lambda_{j} \hat{\beta}_{0 j}^{\mathrm{OLS}}+\left(1-\lambda_{j}\right) \gamma_{00},
$$

where

- $\lambda_{j}=\tau_{0}^{2} /\left(\tau_{0}^{2}+\sigma^{2} / n_{j}\right)=$ reliability of group means
- In practice, the variance components need to be estimated
- Think: what happens when ICC $=0$ (i.e., $\tau_{0}^{2}=0$)? Or ICC $=1$ (i.e., $\sigma^{2}=0$)?
- Read more on Snijders \& Bosker, 4.8

Do schools with higher mean SES

 have students with higher math achievement?
Adding Predictors

- Why some schools have higher mean math achievement than others?

Why Not Simple Regression?

- mathach and meanses are at different levels
- Two (problematic) approaches:
- Disaggregation (both variables as lv 1)
- Aggregation (both variables as lv 2)

Problem of Disaggregation

"Miraculous multiplication of the number of units" (Snijders \& Bosker, p. 16)

- Only 160 schools, but regression uses $N=7,185$

Dependent Observations

- Regression assumes independent observations

Design Effect

Design Effect (Deff)

- Dependent observations \rightarrow reduces information
- Depends on overlap (ICC)
- Deff= 1 + (average cluster size -1) \times ICC
- $N_{\text {eff }}=N / D e f f$

Underestimated Standard Error

- OLS on 7,185 students

Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	12.71276	0.07622	166.80	$<2 e-16$
meanses	5.71680	0.18429	31.02	$<2 e-16$

- MLM

Fixed effects:
Estimate Std. Error t value
$\begin{array}{llll}\text { (Intercept) } & 12.6494 & 0.1493 & 84.74\end{array}$
meanses
5.86350 .361516 .22

(Optional) Approximate Standard Errors

- $N=7,185$ students; $J=160$ schools
- s^{2} meanses $=.170=$ variance of MEANSES

Random effects:

Groups	Name	Variance Std.Dev.	
id	(Intercept	2.639	1.624
Residual	39.157	6.258	
Rumber of obs: 7185, groups: id, 160			

Approximate Standard Errors

\(\begin{aligned} \&-S E_{\mathrm{OLS}} \approx \sqrt{\frac{1}{S^{2} MEANSES}\left(\frac{\tau_{0}^{2}+\sigma^{2}}{N}\right)}=\sqrt{\frac{1}{170}\left(\frac{2.639+39.157}{7185}\right)}

\&=.185

\&\)| $\begin{array}{l}\tau_{0}^{2} \text { (lv-2) is divided by an } \\ \text { incorrect sample size (lv-1) }\end{array}$ |
| :--- |\end{aligned}

$\begin{aligned}-S E_{\text {MLM }} & \approx \sqrt{\frac{1}{s^{2} \text { MEANSES }}\left(\frac{\tau_{0}^{2}}{J}+\frac{\sigma^{2}}{N}\right)} \\ & =\sqrt{\frac{1}{.170}\left(\frac{2.639}{160}+\frac{39.157}{7185}\right)}=.359\end{aligned}$

Type I Error Inflation ${ }^{1}$

Cluster size	ICC	Deff	Type I Error	Cluster size	ICC	Deff	Type I Error
10	0	1.00	.05	10	.20	2.80	.28
25	0	1.00	.05	25	.20	5.80	.46
100	0	1.00	.05	100	.20	20.80	.70
10	.05	1.45	.11	10	.40	5.50	.46
25	.05	2.20	.19	25	.40	13.00	.63
100	.05	5.95	.43	100	For the HSB data, Deff $=$		
				$? ?$			

- Lai \& Kwok (2015): ${ }^{2}$ MLM needed when Deff >1.1

Exercise

- Deff= 1 + (average cluster size - 1) \times ICC
- Average cluster size $=7,185 / 160 \approx 44.91$
- ICC = 0.18
- Bonus Challenge: What is the design effect for a longitudinal study of 5 waves with 30 individuals, and the ICC for the outcome is 0.5 ?

Overconfidence (Disaggregation)

$95 \% \mathrm{Cl}$ of slope $=[5.36,6.08]$

$95 \% \mathrm{Cl}$ of slope $=[5.16,6.57]$

Problem of Aggregation

- Student-level information is ignored
- OLS on 160 schools

Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	12.6219	0.1533	82.35	<2e-16
MEANSES	5.9093	0.3714	15.91	<2e-16 *

- MLM

$S E$ is slightly
overestimated

Fixed effects:

	Estimate Std. Error t value		
(Intercept)	12.6494	0.1493	84.74
MEANSES	5.8635	0.3615	16.22

Model Equations

- Lv 1: mathach $_{i j}=\beta_{0 j}+e_{i j}$
- Lv 2: $\beta_{0 j}=\gamma_{00}+\gamma_{01}$ meanses $_{j}+u_{0 j}$
- Combined: mathach ${ }_{i j}=\gamma_{00}+\gamma_{01}$ meanses $_{j}+u_{0 j}+e_{i j}$

Model Equations

$$
\begin{aligned}
-L v 1: \text { mathach }_{i j} & =\beta_{0 j}+e_{i j} \\
e_{i j} & \sim N(0, \sigma)
\end{aligned}
$$

- Lv 2: $\beta_{0 j}=\gamma_{00}+\gamma_{01}$ meanses $_{j}+u_{0 j}$ $u_{0 j} \sim N\left(0, \tau_{0}\right)$
- Combined:
mathach $_{i j}=\gamma_{00}+\gamma_{01}$ meanses $_{j}+$ $u_{0 j}+e_{i j}$

Lv 1: mathach $_{i j}=\beta_{0 j}+e_{i j}$

Run the Model in R

Fixed effects:			
	Estimate	Std. Error t value	
(Intercept)	12.6494	0.1493	84.74
meanses	5.8635	0.3615	16.22

The estimated school mean of mathach when meanses $=0$ is $\gamma_{00}=12.65(S E=0.15)$

The model predicts that students from two schools with 1 unit difference in meanses will have an average difference of $\gamma_{01}=5.86$ ($S E=0.36$) units in mathach

Run the Model in R

Random effects:

Groups	Name	Variance Std.Dev.	
id	(Intercept)	2.639	1.624
Residual	39.157	6.258	
Number of obs: 7185, groups: id, 160			

> Variance of deviations of school \quad means from the regression line $=\operatorname{Var}\left(u_{0 j}\right)=2.64$
> Variance of individual scores within a school
> $=\operatorname{Var}\left(e_{i j}\right)=39.16$

Statistical Inferences

- It's important to understand that the coefficients you obtained in software are merely estimates, which involves uncertainty
- Confidence intervals
- Wald intervals
- Likelihood-based intervals
- Hypothesis testing (to be discussed later)

Confidence Intervals (Wald)

- 95% CI for $\gamma_{01}=5.86 \pm 2 \times 0.36=[5.16,6.57]$
- Can be obtained in most software

At 95\% confidence level, one unit difference in school-level MEANSES is associated with an average difference in MATHACH of 5.16 to 6.57 units

Confidence Intervals (Likelihood-Based)

```
> confint(m_lv2, parm = "beta_")
Computing profile confidence intervals ...
    2.5 % 97.5 %
(Intercept) 12.356615 12.941707
meanses 5.155769 6.572415
```

- Easily obtained in the R package lme4
- Usually more accurate than Wald intervals, especially with smaller sample sizes
- With a large sample size, the difference is minimal

