The Random Intercept Model

PSYC 575 August 6, 2020 (updated: 5 September 2021)

Week Learning Objectives

- Explain the components of a **random intercept model**
- Interpret intraclass correlations
- Use the **design effect** to decide whether MLM is needed
- Explain why ignoring clustering (e.g., regression) leads to inflated chances of Type I errors
- Describe how MLM pools information to obtain more stable inferences of groups

Data 1982 High School and Beyond Survey¹

- 7,185 students (10-12th graders) from 160 schools (90 public and 70 Catholic)
- Level 1: Student
 - id: group identifier
 - minority: (1 = minority, 0 = not)
 - female: 1 = female, 0 = male
 - ses
 - mathach: Mathematics achievement

- Level 2: School
 - size: school size
 - sector (1 = Catholic, 0 = Public)
 - pracad: proportion in academic track
 - disclim: disciplinary climate
 - himnty: 1 = > 40% minority, 0 = < 40% minority
 - meanses: mean of Lv-1 SES

	ID ¢	MINORITY	FEMALÉ	SES 🌣	MATHACH	SIZE 🗘	SECTOR	PRACAD	DISCLIM	HIMINTŶ	MEANSES
1	1224	0	1	-1.528	5.876	842	0	0.35	1.597	0	-0.428
2	1224	0	1	-0.588	19.708	842	0	0.35	1.597	0	-0.428
3	1224	0	0	-0.528	20.349	842	0	0.35	1.597	0	-0.428
4	1224	0	0	-0.668	8.781	842	0	0.35	1.597	0	-0.428
5	1224	0	0	-0.158	17.898	842	0	0.35	1.597	0	-0.428
6	1224	0	0	0.022	4.583	842	0	0.35	1.597	0	-0.428
7	1224	0	1	-0.618	-2.832	842	0	0.35	1.597	0	-0.428
8	1224	0	0	-0.998	0.523	842	0	0.35	1.597	0	-0.428
9	1224	0	1	-0.888	1.527	842	0	0.35	1.597	0	-0.428
10	1224	0	0	-0.458	21.521	842	0	0.35	1.597	0	-0.428
	Student-level variables							Schoo	l-level	variab	les

	ID ¢	MINORITY	FEMALÉ	SES 🔅	MATHACH	SIZE 🗘	SECTOR	PRACAD	DISCLIM	HIMINTY	MEANSES
		•	-				-			-	
996	2458	1	1	0.852	22.743	545	1	0.89	-1.484	1	0.234
997	2458	1	1	0.262	17.205	545	1	0.89	-1.484	1	0.234
998	2458	1	1	0.052	12.071	545	1	0.89	-1.484	1	0.234
999	2458	1	1	-0.468	19.161	545	1	0.89	-1.484	1	0.234
1000	2458	1	1	-0.268	12.332	545	1	0.89	-1.484	1	0.234
1001	2458	0	1	1.512	22.681	545	1	0.89	-1.484	1	0.234
1002	2458	1	1	0.182	4.928	545	1	0.89	-1.484	1	0.234
1003	2458	1	1	0.242	9.142	545	1	0.89	-1.484	1	0.234
1004	2458	0	1	1.072	24.488	545	1	0.89	-1.484	1	0.234
1005	2458	1	1	1.172	13.666	545	1	0.89	-1.484	1	0.234

Research Questions

- Does math achievement vary across schools? How much is the variation?
- Do schools with higher mean SES have students with higher math achievement?

Random Intercept Model

(Unconditional) Random Intercept Model

- Student level (Lv 1)
 - mathach_{*ij*} = $\beta_{0j} + e_{ij}$

(Unconditional) Random Intercept Model

- School level (Lv 2)
 - $\beta_{0j} = \gamma_{00} + u_{0j}$

(Unconditional) Random Intercept Model

- Student level (Lv 1)
 - mathach_{ij} = $\beta_{0j} + e_{ij}$
- School level (Lv 2)
 - $\beta_{0j} = \gamma_{00} + u_{0j}$

Combined: mathach_{ij} = $\gamma_{00} + u_{0j} + e_{ij}$

Score of student *i* in school *j* = Grand mean (γ_{00}) + school deviation (u_{0j}) + student deviation (e_{ij})

Model Diagram

- Student level (Lv 1)
 - mathach_{ij} = $\beta_{0j} + e_{ij}$, $e_{ij} \sim N(0, \sigma)$
- School level (Lv 2)
 - $\beta_{0j} = \gamma_{00} + u_{0j}, \quad u_{0j} \sim N(0, \tau_0)$
- Combined:
 - mathach_{ij} = $\gamma_{00} + u_{0j} + e_{ij}$

Decomposing School- and Student-Level Information

• mathach = Schoolinfo + Studentinfo

Terminology

- <u>Fixed</u> effects (γ): constant for everyone
- <u>Random</u> effects (*e_{ij}*, *u_{0j}*): varies for different observations/clusters
 - Describe by some probability distributions (e.g., normal)
 - <u>Variance components</u>: variance of random effects

Fixed Effects (R Output)

The estimated grand mean of MATHACH for all students is $\gamma_{00} = 12.64$, SE = 0.24

Intraclass Correlation

Intraclass Correlations (ICC; ρ)

- ICC =
 - 1. <u>Proportion of variance</u> due to the <u>higher (school-) level</u>
 - 2. <u>Average correlation</u> between observations (students) in the <u>same</u> <u>cluster (school)</u>

Variance Components

- $Var(u_{0j}) = \tau_0^2 = between-school variance$
- $Var(e_{ij}) = \sigma^2 = within-school variance$
- ICC: $\label{eq:rho} \rho = \frac{\tau_0^2}{\tau_0^2 + \sigma^2}$

- Typical ICC = .1 to .25 for educational performance¹
- Higher ICCs for repeated measures and longitudinal studies

R Output

># Random effects:

>#	Groups	Name	Variance	Std.Dev
>#	id	(Intercept)	8.614	2.935
>#	Residual		39.148	6.257
>#	Number of	obs: 7185,	groups:	id, 160

Variance of school means = 8.61 Variance of individual scores within a school = 39.15 ICC = 8.61 / (8.61 + 39.15) = 0.18 Question: Does math achievement varies across schools? How much is the variation?

- Yes, there is evidence that student's math achievement varies across schools.
- Variability at the school level accounts for 18% of the total variability of math achievement

Empirical Bayes Estimates

MLM Borrows Information

- β_{0j} = (population) mean math achievement of school *j*
- Most straightforward way to estimate β_{0i} :
 - Take the average of everyone in the sample in school j
- It may be unstable in small samples
- Instead, MLM borrows information from other schools

Also called *Shrinkage estimates*, *Best unbiased linear predictor* (BLUP), *Posterior modes*

Also called *Shrinkage estimates*, *Best unbiased linear predictor* (BLUP), *Posterior modes*

Empirical Bayes "Estimates"

$$\widehat{\beta}_{0j}^{\text{EB}} = \lambda_j \widehat{\beta}_{0j}^{\text{OLS}} + (1 - \lambda_j) \gamma_{00},$$

where

- $\lambda_j = \tau_0^2 / (\tau_0^2 + \sigma^2 / n_j) = \underline{\text{reliability of group means}}$
- In practice, the variance components need to be estimated
- Think: what happens when ICC = 0 (i.e., τ_0^2 = 0)? Or ICC = 1 (i.e., σ^2 = 0)?
- Read more on Snijders & Bosker, 4.8

Do schools with higher mean SES have students with higher math achievement?

Adding Predictors

• Why some schools have higher mean math achievement than others?

Why Not Simple Regression?

- mathach and meanses are at different levels
- Two (problematic) approaches:
 - <u>Disaggregation</u> (both variables as lv 1)
 - Aggregation (both variables as lv 2)

Problem of Disaggregation

"Miraculous multiplication of the number of units" (Snijders & Bosker, p. 16)

• Only 160 schools, but regression uses N = 7,185

Dependent Observations

• Regression assumes *independent* observations

Design Effect

Design Effect (*Deff*)

- Dependent observations

 reduces information
 - Depends on overlap (ICC)
- *Deff* = 1 + (average cluster size 1) × ICC
- $N_{\rm eff} = N / Deff$

population Information you think you have Information you really have

Underestimated Standard Error

• OLS on 7,185 students

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	12.71276	0.07622	166.80	<2e-16 ***
meanses	5.71680	0.18429	31.02	<2e-16 ***

• MLM

Fixed effects:

(Optional) Approximate Standard Errors

- N = 7,185 students; J = 160 schools
- $s^2_{\text{meanses}} = .170 = \text{variance of MEANSES}$

Random effects: Groups Name Variance Std.Dev. id (Intercept) 2.639 1.624 Residual 39.157 6.258 Number of obs: 7185, groups: id, 160

Approximate Standard Errors

•
$$SE_{OLS} \approx \sqrt{\frac{1}{S^2}_{MEANSES}} \left(\frac{\tau_0^2 + \sigma^2}{N}\right) = \sqrt{\frac{1}{170}} \left(\frac{2.639 + 39.157}{7185}\right)$$

= .185
 $\tau_0^2 (lv-2) \text{ is divided by an incorrect sample size (lv-1)}$
• $SE_{MLM} \approx \sqrt{\frac{1}{S^2}_{MEANSES}} \left(\frac{\tau_0^2}{J} + \frac{\sigma^2}{N}\right)$
 $= \sqrt{\frac{1}{.170}} \left(\frac{2.639}{160} + \frac{39.157}{7185}\right) = .359$

Type I Error Inflation¹

Cluster size	ICC	Deff	Туре I Еггог	Cluster size	ICC	Deff	Туре I Еггог
10	0	1.00	.05	10	.20	2.80	.28
25	0	1.00	.05	25	.20	5.80	.46
100	0	1.00	.05	100	.20	20.80	.70
10	.05	1.45	.11	10	.40	5.50	.46
25	.05	2.20	.19	25	.40	13.00	.63
100	.05	5.95	.43	100	For the F	ISB data.	Deff =
					??	,	

• Lai & Kwok (2015):² MLM needed when <u>Deff > 1.1</u>

[1]: Table adapted from Barcikowski (1983) [2]: https://doi.org/10.1080/00220973.2014.907229

Exercise

- *Deff* = 1 + (average cluster size 1) × ICC
- Average cluster size = 7,185 / 160 ≈ 44.91
- ICC = 0.18
- Bonus Challenge: What is the design effect for a longitudinal study of 5 waves with 30 individuals, and the ICC for the outcome is 0.5?

Overconfidence (Disaggregation)

Problem of Aggregation

- Student-level information is ignored
- OLS on <u>160 schools</u>

Estimate Std. Error t value Pr(>|t|)(Intercept)12.62190.153382.35<2e-16 ***</td>MEANSES5.90930.371415.91<2e-16 ***</td>

• MLM

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	12.6494	0.1493	84.74
MEANSES	5.8635	0.3615	16.22

SE is slightly overestimated

Model Equations

- Lv 1: mathach_{ij} = $\beta_{0j} + e_{ij}$
- Lv 2: $\beta_{0j} = \gamma_{00} + \gamma_{01}$ meanses_j + u_{0j}
- Combined: mathach_{ij} = $\gamma_{00} + \gamma_{01}$ meanses_j + $u_{0j} + e_{ij}$

Model Equations

• Lv 1: mathach_{ij} = $\beta_{0j} + e_{ij}$ $e_{ij} \sim N(0, \sigma)$

• Lv 2:
$$\beta_{0j} = \gamma_{00} + \gamma_{01}$$
 meanses_j + u_{0j}
 $u_{0j} \sim N(0, \tau_0)$

• Combined: mathach_{ij} = $\gamma_{00} + \gamma_{01}$ meanses_j + $u_{0j} + e_{ij}$

Lv 1: mathach_{ij} = $\beta_{0j} + e_{ij}$

Run the Model in R

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	12.6494	0.1493	84.74
meanses	5.8635	0.3615	16.22

The estimated school mean of mathach when meanses = 0 is $\gamma_{00} = 12.65$ (SE = 0.15)

The model predicts that students from two schools with 1 unit difference in meanses will have an average difference of $\gamma_{01} = 5.86$ (*SE* = 0.36) units in mathach

Run the Model in R

Random effects:

Groups Name Variance Std.Dev. id (Intercept) 2.639 1.624 Residual 39.157 6.258 Number of obs: 7185, groups: id, 160

> Variance of deviations of school means from the regression line = $Var(u_{0j}) = 2.64$ Variance of individual scores within a school = $Var(e_{ij}) = 39.16$

Statistical Inferences

- It's important to understand that the coefficients you obtained in software are merely <u>estimates</u>, which involves <u>uncertainty</u>
- <u>Confidence intervals</u>
 - Wald intervals
 - Likelihood-based intervals
- <u>Hypothesis testing</u> (to be discussed later)

Confidence Intervals (Wald)

- 95% CI for γ_{01} = 5.86 ± 2 × 0.36 = [5.16, 6.57]
 - Can be obtained in most software

At 95% confidence level, one unit difference in school-level MEANSES is associated with an average difference in MATHACH of **5.16** to **6.57** units

Confidence Intervals (Likelihood-Based)

> confint(m_lv2, parm = "beta_")

Computing profile confidence intervals ...

2.5 % 97.5 %

(Intercept) 12.356615 12.941707

meanses 5.155769 6.572415

- Easily obtained in the R package 1me4
- Usually <u>more accurate than Wald intervals</u>, especially with <u>smaller sample sizes</u>
- With a large sample size, the difference is minimal