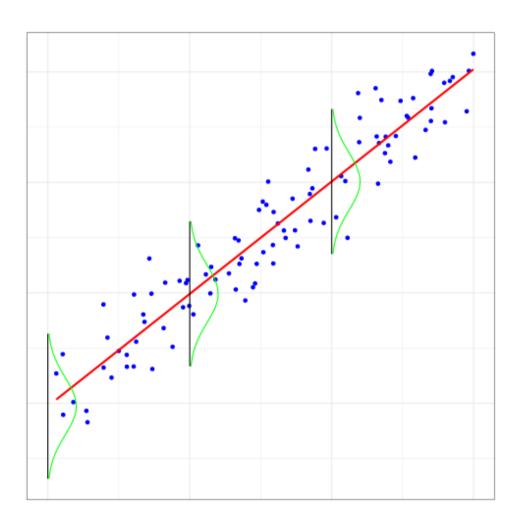
Review of Regression Analysis


PSYC 575

Mark Lai

University of Southern California

2020/08/04 (updated: 2021-08-29)

Statistical Model

A set of statistical assumptions describing how data are generated

• Deterministic/fixed component

 $Y_i=eta_0+eta_1X_{1i}+eta_2X_{2i}+\dots$

• Stochastic/random component

 $egin{aligned} Y_i &= eta_0 + eta_1 X_{1i} + eta_2 X_{2i} + \ldots + eta_i \ & eta_i \sim N(0,\sigma) \end{aligned}$

Why Regression?

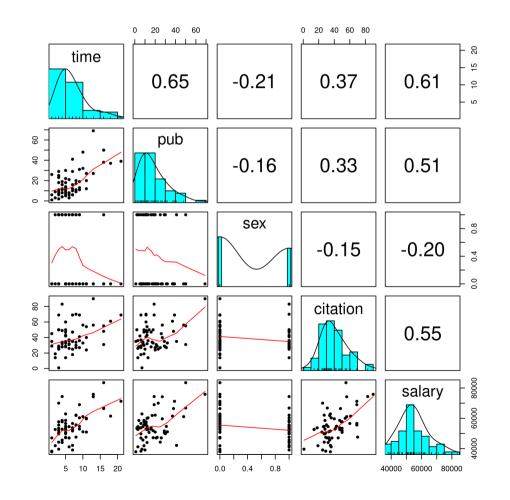
MLM is an extension of multiple regression to deal with data from multiple levels

Learning Objectives

Refresh your memory on regression

- Describe the statistical model
- Write out the model equations
- Simulate data based on a regression model
- Plot interactions

R Demonstration


Salary Data

From Cohen, Cohen, West & Aiken (2003)

Examine factors related to annual salary of faculty in a university department

- time = years after receiving degree
- pub = # of publications
- sex = gender (0 = male, 1 = female)
- citation = # of citations
- salary = annual salary

Data Exploration

- How does the distribution of salary look?
- Are there more males or females in the data?
- How would you describe the relationship between number of publications and salary?

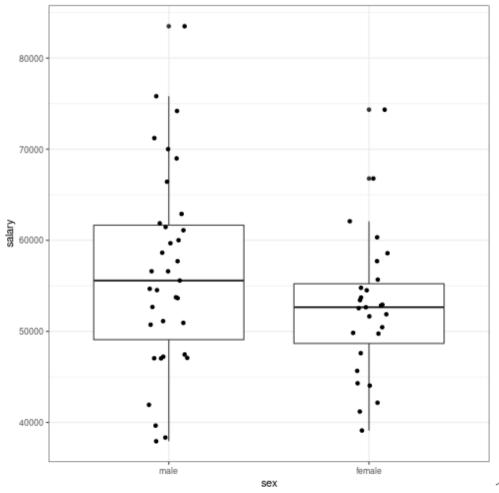
Simple Linear Regression

Sample regression line

Confidence intervals

Centering

Simulation


See lecture and R code

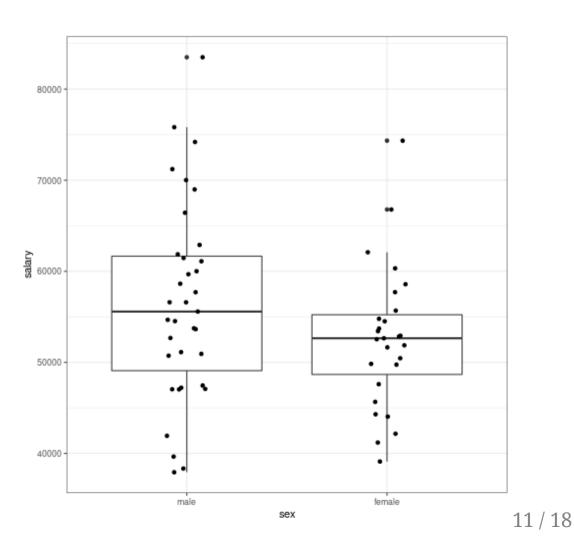
Categorical Predictors

Dummy Coding

With k categories, one needs k-1 dummy variables

The coefficients are differences relative to the reference group

Categorical Predictors


Dummy Coding

With k categories, one needs k-1 dummy variables

The coefficients are differences relative to the reference group

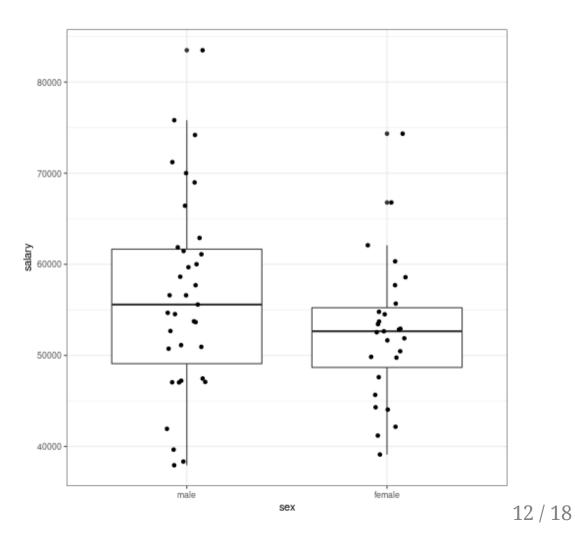
Male = 0

 $y=eta_0+eta_1(0)=eta_0$

Categorical Predictors

Dummy Coding

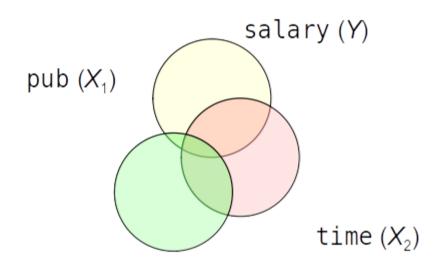
With k categories, one needs k-1 dummy variables


The coefficients are differences relative to the reference group

Male = 0

$$y=eta_0+eta_1(0)=eta_0$$

Female = 1


$$y=eta_0+eta_1(1)=eta_0+eta_1$$

Multiple Regression

Partial Effects

$$ext{salary}_i = eta_0 + eta_1 ext{pub}_i^c + eta_2 ext{time}_i + e_i$$

Interpretations

Every unit increase in X is associated with β_1 unit increase in Y, when all other predictors are constant

Interactions

Regression slope of a predictor depends on another predictor

 $\widehat{ ext{salary}} = 54238 + 105 imes ext{pub}^c + 964 imes ext{time}^c + 15(ext{pub}^c)(ext{time}^c)$

 $\texttt{time} = 7 \Rightarrow \texttt{time}_\texttt{c} = 0.21$

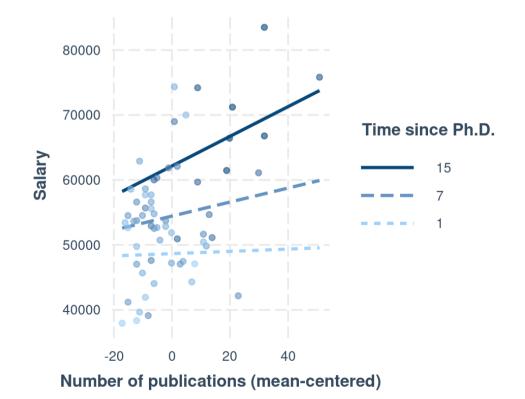
$$\widehat{ ext{salary}} = 54238 + 105 imes ext{pub}^c + 964(0.21) \ + 15(ext{pub}^c)(0.21) \ = 54440 + 120 imes ext{pub}^c$$

 $\texttt{time} = 15 \Rightarrow \texttt{time}_\texttt{c} = 8.21$

$$\widehat{ ext{salary}} = 54238 + 105 imes ext{pub}^c + 964(8.21) \ + 15(ext{pub}^c)(8.21) \ = 62152 + 228 imes ext{pub}^c$$

Interactions

Regression slope of a predictor depends on another predictor


$$\widehat{ ext{salary}} = 54238 + 105 imes ext{pub}^c + 964 imes ext{time}^c + 15(ext{pub}^c)(ext{time}^c)$$

 $\texttt{time} \texttt{=} 7 \Rightarrow \texttt{time}_\texttt{c} \texttt{=} 0.21$

$$\widehat{ ext{salary}} = 54238 + 105 imes ext{pub}^c + 964(0.21) \ + 15(ext{pub}^c)(0.21) \ = 54440 + 120 imes ext{pub}^c$$

 $\texttt{time} = 15 \Rightarrow \texttt{time}_\texttt{c} = 8.21$

$$\widehat{ ext{salary}} = 54238 + 105 imes ext{pub}^c + 964(8.21) \ + 15(ext{pub}^c)(8.21) \ = 62152 + 228 imes ext{pub}^c$$

modelsummary::msummary()

```
library(modelsummary)
msummary(list("M3 + Interaction" = m4),
        fmt = "%.1f") # keep one digit
```

	M3 + Interaction
(Intercept)	54238.1
	(1183.0)
pub_c	104.7
	(98.4)
time_c	964.2
	(339.7)
pub_c × time_c	15.1
	(17.3)
Num.Obs.	62
R2	0.399
R2 Adj.	0.368
AIC	1291.8
BIC	1302.4

Summary

Concepts

- What is a statistical model
- Linear/Multiple Regression
 - Centering
 - Categorical predictor
 - Interpretations
 - Interactions

HW 2

Try replicating the examples in the Rmd file